Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -52,22 +52,117 @@ 52 52 == 1.3 Specification == 53 53 54 54 55 -(% style="color:#037691" %)** LiDARSensor:**55 +(% style="color:#037691" %)**Common DC Characteristics:** 56 56 57 -* Operation Temperature: -40 ~~ 80 °C 58 -* Operation Humidity: 0~~99.9%RH (no Dew) 59 -* Storage Temperature: -10 ~~ 45°C 57 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 58 +* Operating Temperature: -40 ~~ 85°C 59 + 60 +(% style="color:#037691" %)**Probe Specification:** 61 + 60 60 * Measure Range: 3cm~~200cm @ 90% reflectivity 61 61 * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 62 * ToF FoV: ±9°, Total 18° 63 63 * Light source: VCSEL 64 64 67 +(% style="color:#037691" %)**LoRa Spec:** 65 65 69 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 70 +* Max +22 dBm constant RF output vs. 71 +* RX sensitivity: down to -139 dBm. 72 +* Excellent blocking immunity 73 + 74 +(% style="color:#037691" %)**Battery:** 75 + 76 +* Li/SOCI2 un-chargeable battery 77 +* Capacity: 8500mAh 78 +* Self-Discharge: <1% / Year @ 25°C 79 +* Max continuously current: 130mA 80 +* Max boost current: 2A, 1 second 81 + 82 +(% style="color:#037691" %)**Power Consumption** 83 + 84 +* Sleep Mode: 5uA @ 3.3v 85 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 86 + 87 +== 1.4 Applications == 88 + 89 + 90 +* Horizontal distance measurement 91 +* Parking management system 92 +* Object proximity and presence detection 93 +* Intelligent trash can management system 94 +* Robot obstacle avoidance 95 +* Automatic control 96 +* Sewer 97 + 66 66 (% style="display:none" %) 67 67 100 +== 1.5 Sleep mode and working mode == 68 68 69 -= 2. Configure DS20L to connect to LoRaWAN network = 70 70 103 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 104 + 105 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 + 107 + 108 +== 1.6 Button & LEDs == 109 + 110 + 111 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 + 113 + 114 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 116 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 119 +))) 120 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 121 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 122 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 123 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 124 +))) 125 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 + 127 +== 1.7 BLE connection == 128 + 129 + 130 +LDS12-LB support BLE remote configure. 131 + 132 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 133 + 134 +* Press button to send an uplink 135 +* Press button to active device. 136 +* Device Power on or reset. 137 + 138 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 139 + 140 + 141 +== 1.8 Pin Definitions == 142 + 143 + 144 +[[image:image-20230805144259-1.png||height="413" width="741"]] 145 + 146 +== 1.9 Mechanical == 147 + 148 + 149 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 150 + 151 + 152 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 153 + 154 + 155 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 156 + 157 + 158 +(% style="color:blue" %)**Probe Mechanical:** 159 + 160 + 161 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 162 + 163 + 164 += 2. Configure LDS12-LB to connect to LoRaWAN network = 165 + 71 71 == 2.1 How it works == 72 72 73 73 ... ... @@ -479,8 +479,11 @@ 479 479 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 480 480 ))) 481 481 577 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 482 482 579 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 483 483 581 + 484 484 === 2.5.2 Unix TimeStamp === 485 485 486 486 ... ... @@ -543,8 +543,92 @@ 543 543 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 544 544 545 545 546 - (% style="color:inherit;font-family:inherit; font-size:29px"%)3. Configure LDS12-LB644 +== 2.7 LiDAR ToF Measurement == 547 547 646 +=== 2.7.1 Principle of Distance Measurement === 647 + 648 + 649 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 + 651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 + 653 + 654 +=== 2.7.2 Distance Measurement Characteristics === 655 + 656 + 657 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 + 659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 + 661 + 662 +((( 663 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 +))) 665 + 666 +((( 667 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 +))) 669 + 670 +((( 671 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 +))) 673 + 674 + 675 +((( 676 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 +))) 678 + 679 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 + 681 +((( 682 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 +))) 684 + 685 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 + 687 +((( 688 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 +))) 690 + 691 + 692 +=== 2.7.3 Notice of usage === 693 + 694 + 695 +Possible invalid /wrong reading for LiDAR ToF tech: 696 + 697 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 + 702 +=== 2.7.4 Reflectivity of different objects === 703 + 704 + 705 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 +Unpolished white metal surface 723 +)))|(% style="width:93px" %)130% 724 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 + 728 += 3. Configure LDS12-LB = 729 + 548 548 == 3.1 Configure Methods == 549 549 550 550 ... ... @@ -659,7 +659,35 @@ 659 659 660 660 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 661 661 844 +=== 3.3.3 Set Power Output Duration === 662 662 846 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 847 + 848 +~1. first enable the power output to external sensor, 849 + 850 +2. keep it on as per duration, read sensor value and construct uplink payload 851 + 852 +3. final, close the power output. 853 + 854 +(% style="color:blue" %)**AT Command: AT+3V3T** 855 + 856 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 857 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 859 +OK 860 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 863 + 864 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 +Format: Command Code (0x07) followed by 3 bytes. 866 + 867 +The first byte is 01,the second and third bytes are the time to turn on. 868 + 869 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 872 + 663 663 = 4. Battery & Power Consumption = 664 664 665 665 ... ... @@ -728,7 +728,7 @@ 728 728 = 8. Order Info = 729 729 730 730 731 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**941 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 732 732 733 733 (% style="color:red" %)**XXX**(%%): **The default frequency band** 734 734 ... ... @@ -753,7 +753,7 @@ 753 753 754 754 (% style="color:#037691" %)**Package Includes**: 755 755 756 -* DS2 0L LoRaWANSmartDistanceDetector x 1966 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 757 757 758 758 (% style="color:#037691" %)**Dimension and weight**: 759 759