Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -19,55 +19,166 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==22 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.25 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**29 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.31 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 34 -DS2 0Lsupports(% style="color:blue" %)**Datalogfeature**(%%).Itwill record thedatawhen thereis no network coverageand userscanretrieve the sensorvaluelatertoensure no miss forevery sensor reading.33 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 35 35 36 - [[image:image-20231110091506-4.png||height="391"width="768"]]35 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 37 37 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 39 +[[image:image-20230615152941-1.png||height="459" width="800"]] 40 + 41 + 39 39 == 1.2 Features == 40 40 41 41 42 -* LoRaWAN Class A protocol 43 -* LiDAR distance detector, range 3 ~~ 200cm 44 -* Periodically detect or continuously detect mode 45 +* LoRaWAN 1.0.3 Class A 46 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 +* Ultra-low power consumption 48 +* Laser technology for distance detection 49 +* Measure Distance: 0.1m~~12m 50 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 51 +* Monitor Battery Level 52 +* Support Bluetooth v5.1 and LoRaWAN remote configure 53 +* Support wireless OTA update firmware 45 45 * AT Commands to change parameters 46 -* Remotely configure parameters via LoRaWAN Downlink 47 -* Alarm & Counting mode 48 -* Datalog Feature 49 -* Firmware upgradable via program port or LoRa protocol 50 -* Built-in 2400mAh battery or power by external power source 55 +* Downlink to change configure 56 +* 8500mAh Battery for long term use 51 51 52 52 == 1.3 Specification == 53 53 54 54 55 -(% style="color:#037691" %)** LiDARSensor:**61 +(% style="color:#037691" %)**Common DC Characteristics:** 56 56 57 -* Operation Temperature: -40 ~~ 80 °C 58 -* Operation Humidity: 0~~99.9%RH (no Dew) 59 -* Storage Temperature: -10 ~~ 45°C 60 -* Measure Range: 3cm~~200cm @ 90% reflectivity 61 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 -* ToF FoV: ±9°, Total 18° 63 -* Light source: VCSEL 63 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 64 64 66 +(% style="color:#037691" %)**Probe Specification:** 65 65 68 +* Storage temperature:-20℃~~75℃ 69 +* Operating temperature : -20℃~~60℃ 70 +* Measure Distance: 71 +** 0.1m ~~ 12m @ 90% Reflectivity 72 +** 0.1m ~~ 4m @ 10% Reflectivity 73 +* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 74 +* Distance resolution : 1cm 75 +* Ambient light immunity : 70klux 76 +* Enclosure rating : IP65 77 +* Light source : LED 78 +* Central wavelength : 850nm 79 +* FOV : 3.6° 80 +* Material of enclosure : ABS+PC 81 +* Wire length : 25cm 82 + 83 +(% style="color:#037691" %)**LoRa Spec:** 84 + 85 +* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 86 +* Max +22 dBm constant RF output vs. 87 +* RX sensitivity: down to -139 dBm. 88 +* Excellent blocking immunity 89 + 90 +(% style="color:#037691" %)**Battery:** 91 + 92 +* Li/SOCI2 un-chargeable battery 93 +* Capacity: 8500mAh 94 +* Self-Discharge: <1% / Year @ 25°C 95 +* Max continuously current: 130mA 96 +* Max boost current: 2A, 1 second 97 + 98 +(% style="color:#037691" %)**Power Consumption** 99 + 100 +* Sleep Mode: 5uA @ 3.3v 101 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 102 + 103 +== 1.4 Applications == 104 + 105 + 106 +* Horizontal distance measurement 107 +* Parking management system 108 +* Object proximity and presence detection 109 +* Intelligent trash can management system 110 +* Robot obstacle avoidance 111 +* Automatic control 112 +* Sewer 113 + 66 66 (% style="display:none" %) 67 67 116 +== 1.5 Sleep mode and working mode == 68 68 69 -= 2. Configure DS20L to connect to LoRaWAN network = 70 70 119 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 120 + 121 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 122 + 123 + 124 +== 1.6 Button & LEDs == 125 + 126 + 127 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 128 + 129 + 130 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 131 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 132 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 133 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 134 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 135 +))) 136 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 137 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 138 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 139 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 140 +))) 141 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 142 + 143 +== 1.7 BLE connection == 144 + 145 + 146 +LDS12-LB support BLE remote configure. 147 + 148 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 149 + 150 +* Press button to send an uplink 151 +* Press button to active device. 152 +* Device Power on or reset. 153 + 154 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 155 + 156 + 157 +== 1.8 Pin Definitions == 158 + 159 + 160 +[[image:image-20230805144259-1.png||height="413" width="741"]] 161 + 162 +== 1.9 Mechanical == 163 + 164 + 165 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 166 + 167 + 168 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 169 + 170 + 171 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 172 + 173 + 174 +(% style="color:blue" %)**Probe Mechanical:** 175 + 176 + 177 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 178 + 179 + 180 += 2. Configure LDS12-LB to connect to LoRaWAN network = 181 + 71 71 == 2.1 How it works == 72 72 73 73 ... ... @@ -82,7 +82,7 @@ 82 82 83 83 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 84 84 85 -[[image:image-202311 10091447-3.png||height="383" width="752"]](% style="display:none" %)196 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 86 86 87 87 88 88 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -479,8 +479,11 @@ 479 479 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 480 480 ))) 481 481 593 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 482 482 595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 483 483 597 + 484 484 === 2.5.2 Unix TimeStamp === 485 485 486 486 ... ... @@ -543,8 +543,92 @@ 543 543 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 544 544 545 545 546 - (% style="color:inherit;font-family:inherit; font-size:29px"%)3. Configure LDS12-LB660 +== 2.7 LiDAR ToF Measurement == 547 547 662 +=== 2.7.1 Principle of Distance Measurement === 663 + 664 + 665 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 666 + 667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 668 + 669 + 670 +=== 2.7.2 Distance Measurement Characteristics === 671 + 672 + 673 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 674 + 675 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 676 + 677 + 678 +((( 679 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 680 +))) 681 + 682 +((( 683 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 684 +))) 685 + 686 +((( 687 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 688 +))) 689 + 690 + 691 +((( 692 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 693 +))) 694 + 695 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 696 + 697 +((( 698 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 699 +))) 700 + 701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 702 + 703 +((( 704 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 705 +))) 706 + 707 + 708 +=== 2.7.3 Notice of usage === 709 + 710 + 711 +Possible invalid /wrong reading for LiDAR ToF tech: 712 + 713 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 714 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 715 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 716 +* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 717 + 718 +=== 2.7.4 Reflectivity of different objects === 719 + 720 + 721 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 722 +|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 723 +|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 724 +|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 725 +|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 726 +|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 727 +|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 728 +|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 729 +|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 730 +|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 731 +|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 732 +|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 733 +|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 734 +|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 735 +|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 736 +|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 737 +|(% style="width:53px" %)15|(% style="width:229px" %)((( 738 +Unpolished white metal surface 739 +)))|(% style="width:93px" %)130% 740 +|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 741 +|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 742 +|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 743 + 744 += 3. Configure LDS12-LB = 745 + 548 548 == 3.1 Configure Methods == 549 549 550 550 ... ... @@ -659,7 +659,35 @@ 659 659 660 660 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 661 661 860 +=== 3.3.3 Set Power Output Duration === 662 662 862 +Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 863 + 864 +~1. first enable the power output to external sensor, 865 + 866 +2. keep it on as per duration, read sensor value and construct uplink payload 867 + 868 +3. final, close the power output. 869 + 870 +(% style="color:blue" %)**AT Command: AT+3V3T** 871 + 872 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 873 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 874 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 875 +OK 876 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 877 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 878 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 879 + 880 +(% style="color:blue" %)**Downlink Command: 0x07**(%%) 881 +Format: Command Code (0x07) followed by 3 bytes. 882 + 883 +The first byte is 01,the second and third bytes are the time to turn on. 884 + 885 +* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 886 +* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 887 +* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 888 + 663 663 = 4. Battery & Power Consumption = 664 664 665 665 ... ... @@ -728,7 +728,7 @@ 728 728 = 8. Order Info = 729 729 730 730 731 -Part Number: (% style="color:blue" %)**DS2 0L-XXX**957 +Part Number: (% style="color:blue" %)**LDS12-LB-XXX** 732 732 733 733 (% style="color:red" %)**XXX**(%%): **The default frequency band** 734 734 ... ... @@ -753,7 +753,7 @@ 753 753 754 754 (% style="color:#037691" %)**Package Includes**: 755 755 756 -* DS2 0L LoRaWANSmartDistanceDetector x 1982 +* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1 757 757 758 758 (% style="color:#037691" %)**Dimension and weight**: 759 759