Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version
To version 92.1
edited by Saxer Lin
on 2023/08/05 10:41
Change comment: Uploaded new attachment "image-20230805104104-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,36 +19,44 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
32 +LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
35 35  
36 -[[image:image-20231110091506-4.png||height="391" width="768"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 37  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN Class A protocol
43 -* LiDAR distance detector, range 3 ~~ 200cm
44 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
45 45  * AT Commands to change parameters
46 -* Remotely configure parameters via LoRaWAN Downlink
47 -* Alarm & Counting mode
48 -* Datalog Feature
49 -* Firmware upgradable via program port or LoRa protocol
50 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
51 51  
57 +
58 +
52 52  == 1.3 Specification ==
53 53  
54 54  
... ... @@ -59,10 +59,20 @@
59 59  
60 60  (% style="color:#037691" %)**Probe Specification:**
61 61  
62 -* Measure Range: 3cm~~200cm @ 90% reflectivity
63 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
64 -* ToF FoV: ±9°, Total 18°
65 -* Light source: VCSEL
69 +* Storage temperature:-20℃~~75℃
70 +* Operating temperature : -20℃~~60℃
71 +* Measure Distance:
72 +** 0.1m ~~ 12m @ 90% Reflectivity
73 +** 0.1m ~~ 4m @ 10% Reflectivity
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
76 +* Ambient light immunity : 70klux
77 +* Enclosure rating : IP65
78 +* Light source : LED
79 +* Central wavelength : 850nm
80 +* FOV : 3.6°
81 +* Material of enclosure : ABS+PC
82 +* Wire length : 25cm
66 66  
67 67  (% style="color:#037691" %)**LoRa Spec:**
68 68  
... ... @@ -84,6 +84,8 @@
84 84  * Sleep Mode: 5uA @ 3.3v
85 85  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
86 86  
104 +
105 +
87 87  == 1.4 Applications ==
88 88  
89 89  
... ... @@ -95,6 +95,8 @@
95 95  * Automatic control
96 96  * Sewer
97 97  
117 +
118 +
98 98  (% style="display:none" %)
99 99  
100 100  == 1.5 Sleep mode and working mode ==
... ... @@ -124,6 +124,8 @@
124 124  )))
125 125  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 126  
148 +
149 +
127 127  == 1.7 BLE connection ==
128 128  
129 129  
... ... @@ -140,8 +140,8 @@
140 140  
141 141  == 1.8 Pin Definitions ==
142 142  
166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
143 143  
144 -[[image:image-20230805144259-1.png||height="413" width="741"]]
145 145  
146 146  == 1.9 Mechanical ==
147 147  
... ... @@ -177,7 +177,7 @@
177 177  
178 178  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
179 179  
180 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
181 181  
182 182  
183 183  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -238,8 +238,6 @@
238 238  
239 239  Example parse in TTNv3
240 240  
241 -[[image:image-20230805103904-1.png||height="131" width="711"]]
242 -
243 243  (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
244 244  
245 245  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
... ... @@ -295,11 +295,11 @@
295 295  
296 296  
297 297  (((
298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
319 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
320 +)))
299 299  
300 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
301 -
302 -Uplink Payload totals 11 bytes.
322 +(((
323 +Uplink payload includes in total 11 bytes.
303 303  )))
304 304  
305 305  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -314,7 +314,7 @@
314 314  [[Message Type>>||anchor="HMessageType"]]
315 315  )))
316 316  
317 -[[image:image-20230805104104-2.png||height="136" width="754"]]
338 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
318 318  
319 319  
320 320  ==== (% style="color:blue" %)**Battery Info**(%%) ====
... ... @@ -364,33 +364,18 @@
364 364  Customers can judge whether they need to adjust the environment based on the signal strength.
365 365  
366 366  
367 -**1) When the sensor detects valid data:**
368 -
369 -[[image:image-20230805155335-1.png||height="145" width="724"]]
370 -
371 -
372 -**2) When the sensor detects invalid data:**
373 -
374 -[[image:image-20230805155428-2.png||height="139" width="726"]]
375 -
376 -
377 -**3) When the sensor is not connected:**
378 -
379 -[[image:image-20230805155515-3.png||height="143" width="725"]]
380 -
381 -
382 382  ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
383 383  
384 384  
385 385  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386 386  
387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
393 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
388 388  
389 389  **Example:**
390 390  
391 -If byte[0]&0x01=0x00 : Normal uplink packet.
397 +0x00: Normal uplink packet.
392 392  
393 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
399 +0x01: Interrupt Uplink Packet.
394 394  
395 395  
396 396  ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
... ... @@ -416,97 +416,14 @@
416 416  
417 417  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 418  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
425 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
426 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
421 421  
422 -[[image:image-20230805150315-4.png||height="233" width="723"]]
423 423  
424 424  
425 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
430 +=== 2.3.3 Decode payload in The Things Network ===
426 426  
427 427  
428 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
429 -
430 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
431 -
432 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 -**Size(bytes)**
435 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
436 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
437 -Reserve(0xFF)
438 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
439 -LiDAR temp
440 -)))|(% style="width:85px" %)Unix TimeStamp
441 -
442 -**Interrupt flag & Interrupt level:**
443 -
444 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
445 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
446 -**Size(bit)**
447 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
448 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
449 -Interrupt flag
450 -)))
451 -
452 -* (((
453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
454 -)))
455 -
456 -For example, in the US915 band, the max payload for different DR is:
457 -
458 -**a) DR0:** max is 11 bytes so one entry of data
459 -
460 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
461 -
462 -**c) DR2:** total payload includes 11 entries of data
463 -
464 -**d) DR3:** total payload includes 22 entries of data.
465 -
466 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
467 -
468 -
469 -**Downlink:**
470 -
471 -0x31 64 CC 68 0C 64 CC 69 74 05
472 -
473 -[[image:image-20230805144936-2.png||height="113" width="746"]]
474 -
475 -**Uplink:**
476 -
477 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
478 -
479 -
480 -**Parsed Value:**
481 -
482 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
483 -
484 -
485 -[360,176,30,High,True,2023-08-04 02:53:00],
486 -
487 -[355,168,30,Low,False,2023-08-04 02:53:29],
488 -
489 -[245,211,30,Low,False,2023-08-04 02:54:29],
490 -
491 -[57,700,30,Low,False,2023-08-04 02:55:29],
492 -
493 -[361,164,30,Low,True,2023-08-04 02:56:00],
494 -
495 -[337,184,30,Low,False,2023-08-04 02:56:40],
496 -
497 -[20,4458,30,Low,False,2023-08-04 02:57:40],
498 -
499 -[362,173,30,Low,False,2023-08-04 02:58:53],
500 -
501 -
502 -**History read from serial port:**
503 -
504 -[[image:image-20230805145056-3.png]]
505 -
506 -
507 -=== 2.3.4 Decode payload in The Things Network ===
508 -
509 -
510 510  While using TTN network, you can add the payload format to decode the payload.
511 511  
512 512  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -521,9 +521,15 @@
521 521  )))
522 522  
523 523  
524 -== 2.4 ​Show Data in DataCake IoT Server ==
447 +== 2.4 Uplink Interval ==
525 525  
526 526  
450 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
451 +
452 +
453 +== 2.5 ​Show Data in DataCake IoT Server ==
454 +
455 +
527 527  (((
528 528  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
529 529  )))
... ... @@ -556,13 +556,13 @@
556 556  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
557 557  
558 558  
559 -== 2.5 Datalog Feature ==
488 +== 2.6 Datalog Feature ==
560 560  
561 561  
562 562  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
563 563  
564 564  
565 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
494 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
566 566  
567 567  
568 568  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -579,7 +579,7 @@
579 579  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 580  
581 581  
582 -=== 2.5.2 Unix TimeStamp ===
511 +=== 2.6.2 Unix TimeStamp ===
583 583  
584 584  
585 585  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -596,7 +596,7 @@
596 596  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 597  
598 598  
599 -=== 2.5.3 Set Device Time ===
528 +=== 2.6.3 Set Device Time ===
600 600  
601 601  
602 602  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -606,7 +606,7 @@
606 606  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 607  
608 608  
609 -=== 2.5.4 Poll sensor value ===
538 +=== 2.6.4 Poll sensor value ===
610 610  
611 611  
612 612  Users can poll sensor values based on timestamps. Below is the downlink command.
... ... @@ -633,7 +633,7 @@
633 633  )))
634 634  
635 635  
636 -== 2.6 Frequency Plans ==
565 +== 2.7 Frequency Plans ==
637 637  
638 638  
639 639  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -641,9 +641,9 @@
641 641  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
642 642  
643 643  
644 -== 2.7 LiDAR ToF Measurement ==
573 +== 2.8 LiDAR ToF Measurement ==
645 645  
646 -=== 2.7.1 Principle of Distance Measurement ===
575 +=== 2.8.1 Principle of Distance Measurement ===
647 647  
648 648  
649 649  The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
... ... @@ -651,7 +651,7 @@
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 652  
653 653  
654 -=== 2.7.2 Distance Measurement Characteristics ===
583 +=== 2.8.2 Distance Measurement Characteristics ===
655 655  
656 656  
657 657  With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
... ... @@ -689,7 +689,7 @@
689 689  )))
690 690  
691 691  
692 -=== 2.7.3 Notice of usage ===
621 +=== 2.8.3 Notice of usage ===
693 693  
694 694  
695 695  Possible invalid /wrong reading for LiDAR ToF tech:
... ... @@ -699,9 +699,11 @@
699 699  * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 700  * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 701  
702 -=== 2.7.4  Reflectivity of different objects ===
703 703  
704 704  
633 +=== 2.8.4  Reflectivity of different objects ===
634 +
635 +
705 705  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 706  |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 707  |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
... ... @@ -725,6 +725,8 @@
725 725  |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 726  |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 727  
659 +
660 +
728 728  = 3. Configure LDS12-LB =
729 729  
730 730  == 3.1 Configure Methods ==
... ... @@ -738,6 +738,8 @@
738 738  
739 739  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
740 740  
674 +
675 +
741 741  == 3.2 General Commands ==
742 742  
743 743  
... ... @@ -806,9 +806,9 @@
806 806  === 3.3.2 Set Interrupt Mode ===
807 807  
808 808  
809 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
744 +Feature, Set Interrupt mode for PA8 of pin.
810 810  
811 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
746 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
812 812  
813 813  (% style="color:blue" %)**AT Command: AT+INTMOD**
814 814  
... ... @@ -819,11 +819,7 @@
819 819  OK
820 820  the mode is 0 =Disable Interrupt
821 821  )))
822 -|(% style="width:154px" %)(((
823 -AT+INTMOD=2
824 -
825 -(default)
826 -)))|(% style="width:196px" %)(((
757 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
827 827  Set Transmit Interval
828 828  0. (Disable Interrupt),
829 829  ~1. (Trigger by rising and falling edge)
... ... @@ -841,9 +841,11 @@
841 841  
842 842  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
843 843  
775 +
776 +
844 844  === 3.3.3  Set Power Output Duration ===
845 845  
846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
779 +Control the output duration 3V3 . Before each sampling, device will
847 847  
848 848  ~1. first enable the power output to external sensor,
849 849  
... ... @@ -859,7 +859,6 @@
859 859  OK
860 860  |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 861  |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
863 863  
864 864  (% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 865  Format: Command Code (0x07) followed by 3 bytes.
... ... @@ -868,8 +868,9 @@
868 868  
869 869  * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 870  * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
872 872  
804 +
805 +
873 873  = 4. Battery & Power Consumption =
874 874  
875 875  
... ... @@ -898,6 +898,8 @@
898 898  
899 899  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
900 900  
834 +
835 +
901 901  = 6. FAQ =
902 902  
903 903  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -958,6 +958,8 @@
958 958  
959 959  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
960 960  
896 +
897 +
961 961  = 9. ​Packing Info =
962 962  
963 963  
... ... @@ -975,6 +975,8 @@
975 975  
976 976  * Weight / pcs : g
977 977  
915 +
916 +
978 978  = 10. Support =
979 979  
980 980  
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content