Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version
To version 82.3
edited by Xiaoling
on 2023/06/14 16:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,35 +19,41 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
32 +LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
35 35  
36 -[[image:image-20231110091506-4.png||height="391" width="768"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 37  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 +
40 +
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN Class A protocol
43 -* LiDAR distance detector, range 3 ~~ 200cm
44 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Laser technology for distance detection
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 +* Monitor Battery Level
51 +* Support Bluetooth v5.1 and LoRaWAN remote configure
52 +* Support wireless OTA update firmware
45 45  * AT Commands to change parameters
46 -* Remotely configure parameters via LoRaWAN Downlink
47 -* Alarm & Counting mode
48 -* Datalog Feature
49 -* Firmware upgradable via program port or LoRa protocol
50 -* Built-in 2400mAh battery or power by external power source
54 +* Downlink to change configure
55 +* 8500mAh Battery for long term use
51 51  
52 52  == 1.3 Specification ==
53 53  
... ... @@ -59,10 +59,20 @@
59 59  
60 60  (% style="color:#037691" %)**Probe Specification:**
61 61  
62 -* Measure Range: 3cm~~200cm @ 90% reflectivity
63 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
64 -* ToF FoV: ±9°, Total 18°
65 -* Light source: VCSEL
67 +* Storage temperature:-20℃~~75℃
68 +* Operating temperature : -20℃~~60℃
69 +* Measure Distance:
70 +** 0.1m ~~ 12m @ 90% Reflectivity
71 +** 0.1m ~~ 4m @ 10% Reflectivity
72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 +* Distance resolution : 5mm
74 +* Ambient light immunity : 70klux
75 +* Enclosure rating : IP65
76 +* Light source : LED
77 +* Central wavelength : 850nm
78 +* FOV : 3.6°
79 +* Material of enclosure : ABS+PC
80 +* Wire length : 25cm
66 66  
67 67  (% style="color:#037691" %)**LoRa Spec:**
68 68  
... ... @@ -84,28 +84,143 @@
84 84  * Sleep Mode: 5uA @ 3.3v
85 85  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
86 86  
87 -== 1.4 Applications ==
102 +== 1.4 Suitable Container & Liquid ==
88 88  
89 89  
90 -* Horizontal distance measurement
91 -* Parking management system
92 -* Object proximity and presence detection
93 -* Intelligent trash can management system
94 -* Robot obstacle avoidance
95 -* Automatic control
96 -* Sewer
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
97 97  
98 98  (% style="display:none" %)
99 99  
100 -== 1.5 Sleep mode and working mode ==
114 +== 1.5 Install LDS12-LB ==
101 101  
102 102  
117 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
118 +
119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
120 +
121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
122 +
123 +
124 +(((
125 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
126 +)))
127 +
128 +(((
129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
130 +)))
131 +
132 +[[image:image-20230613143052-5.png]]
133 +
134 +
135 +No polish needed if the container is shine metal surface without paint or non-metal container.
136 +
137 +[[image:image-20230613143125-6.png]]
138 +
139 +
140 +(((
141 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
142 +)))
143 +
144 +(((
145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
146 +)))
147 +
148 +(((
149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
150 +)))
151 +
152 +(((
153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
154 +)))
155 +
156 +
157 +(((
158 +(% style="color:blue" %)**LED Status:**
159 +)))
160 +
161 +* (((
162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
163 +)))
164 +
165 +* (((
166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
167 +)))
168 +* (((
169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
170 +)))
171 +
172 +(((
173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
174 +)))
175 +
176 +
177 +(((
178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
179 +)))
180 +
181 +
182 +(((
183 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
184 +)))
185 +
186 +(((
187 +Prepare Eproxy AB glue.
188 +)))
189 +
190 +(((
191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
192 +)))
193 +
194 +(((
195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
196 +)))
197 +
198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
199 +
200 +
201 +(((
202 +(% style="color:red" %)**Note :**
203 +
204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 +)))
206 +
207 +(((
208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 +)))
210 +
211 +
212 +== 1.6 Applications ==
213 +
214 +
215 +* Smart liquid control solution
216 +
217 +* Smart liquefied gas solution
218 +
219 +== 1.7 Precautions ==
220 +
221 +
222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
223 +
224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
225 +
226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
227 +
228 +(% style="display:none" %)
229 +
230 +== 1.8 Sleep mode and working mode ==
231 +
232 +
103 103  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
104 104  
105 105  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 106  
107 107  
108 -== 1.6 Button & LEDs ==
238 +== 1.9 Button & LEDs ==
109 109  
110 110  
111 111  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -112,7 +112,7 @@
112 112  
113 113  
114 114  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
245 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
116 116  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 117  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 118  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -124,7 +124,7 @@
124 124  )))
125 125  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 126  
127 -== 1.7 BLE connection ==
257 +== 1.10 BLE connection ==
128 128  
129 129  
130 130  LDS12-LB support BLE remote configure.
... ... @@ -138,12 +138,12 @@
138 138  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
139 139  
140 140  
141 -== 1.8 Pin Definitions ==
271 +== 1.11 Pin Definitions ==
142 142  
273 +[[image:image-20230523174230-1.png]]
143 143  
144 -[[image:image-20230805144259-1.png||height="413" width="741"]]
145 145  
146 -== 1.9 Mechanical ==
276 +== 1.12 Mechanical ==
147 147  
148 148  
149 149  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -158,6 +158,7 @@
158 158  (% style="color:blue" %)**Probe Mechanical:**
159 159  
160 160  
291 +
161 161  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
162 162  
163 163  
... ... @@ -177,7 +177,7 @@
177 177  
178 178  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
179 179  
180 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
181 181  
182 182  
183 183  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -221,118 +221,75 @@
221 221  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
222 222  
223 223  
224 -== 2.3 ​Uplink Payload ==
355 +== 2.3  ​Uplink Payload ==
225 225  
226 -=== 2.3.1 Device Status, FPORT~=5 ===
227 227  
358 +(((
359 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
360 +)))
228 228  
229 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
362 +(((
363 +Uplink payload includes in total 8 bytes.
364 +)))
230 230  
231 -The Payload format is as below.
232 -
233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
235 235  **Size(bytes)**
236 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
237 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
371 +[[Distance>>||anchor="H2.3.2A0Distance"]]
372 +(unit: mm)
373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
238 238  
239 -Example parse in TTNv3
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
240 240  
241 -[[image:image-20230805103904-1.png||height="131" width="711"]]
242 242  
243 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
380 +=== 2.3.1  Battery Info ===
244 244  
245 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
246 246  
247 -(% style="color:blue" %)**Frequency Band**:
383 +Check the battery voltage for LDS12-LB.
248 248  
249 -0x01: EU868
250 -
251 -0x02: US915
252 -
253 -0x03: IN865
254 -
255 -0x04: AU915
256 -
257 -0x05: KZ865
258 -
259 -0x06: RU864
260 -
261 -0x07: AS923
262 -
263 -0x08: AS923-1
264 -
265 -0x09: AS923-2
266 -
267 -0x0a: AS923-3
268 -
269 -0x0b: CN470
270 -
271 -0x0c: EU433
272 -
273 -0x0d: KR920
274 -
275 -0x0e: MA869
276 -
277 -(% style="color:blue" %)**Sub-Band**:
278 -
279 -AU915 and US915:value 0x00 ~~ 0x08
280 -
281 -CN470: value 0x0B ~~ 0x0C
282 -
283 -Other Bands: Always 0x00
284 -
285 -(% style="color:blue" %)**Battery Info**:
286 -
287 -Check the battery voltage.
288 -
289 289  Ex1: 0x0B45 = 2885mV
290 290  
291 291  Ex2: 0x0B49 = 2889mV
292 292  
293 293  
294 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
390 +=== 2.3.2  Distance ===
295 295  
296 296  
297 297  (((
298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
394 +Get the distance. Flat object range 20mm - 2000mm.
395 +)))
299 299  
300 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
397 +(((
398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
301 301  
302 -Uplink Payload totals 11 bytes.
400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
303 303  )))
304 304  
305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
306 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
307 -**Size(bytes)**
308 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
309 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
310 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
311 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
312 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
313 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
314 -[[Message Type>>||anchor="HMessageType"]]
315 -)))
403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
316 316  
317 -[[image:image-20230805104104-2.png||height="136" width="754"]]
405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
318 318  
407 +=== 2.3.3  Interrupt Pin ===
319 319  
320 -==== (% style="color:blue" %)**Battery Info**(%%) ====
321 321  
410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
322 322  
323 -Check the battery voltage for LDS12-LB.
412 +**Example:**
324 324  
325 -Ex1: 0x0B45 = 2885mV
414 +0x00: Normal uplink packet.
326 326  
327 -Ex2: 0x0B49 = 2889mV
416 +0x01: Interrupt Uplink Packet.
328 328  
329 329  
330 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
419 +=== 2.3.4  DS18B20 Temperature sensor ===
331 331  
332 332  
333 333  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
334 334  
335 -
336 336  **Example**:
337 337  
338 338  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -340,191 +340,42 @@
340 340  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
341 341  
342 342  
343 -==== (% style="color:blue" %)**Distance**(%%) ====
431 +=== 2.3.5  Sensor Flag ===
344 344  
345 345  
346 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
347 -
348 -
349 -**Example**:
350 -
351 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
352 -
353 -
354 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
355 -
356 -
357 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
358 -
359 -
360 -**Example**:
361 -
362 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
363 -
364 -Customers can judge whether they need to adjust the environment based on the signal strength.
365 -
366 -
367 -**1) When the sensor detects valid data:**
368 -
369 -[[image:image-20230805155335-1.png||height="145" width="724"]]
370 -
371 -
372 -**2) When the sensor detects invalid data:**
373 -
374 -[[image:image-20230805155428-2.png||height="139" width="726"]]
375 -
376 -
377 -**3) When the sensor is not connected:**
378 -
379 -[[image:image-20230805155515-3.png||height="143" width="725"]]
380 -
381 -
382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
383 -
384 -
385 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386 -
387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
388 -
389 -**Example:**
390 -
391 -If byte[0]&0x01=0x00 : Normal uplink packet.
392 -
393 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
394 -
395 -
396 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
397 -
398 -
399 -Characterize the internal temperature value of the sensor.
400 -
401 -**Example: **
402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
404 -
405 -
406 -==== (% style="color:blue" %)**Message Type**(%%) ====
407 -
408 -
409 409  (((
410 -For a normal uplink payload, the message type is always 0x01.
435 +0x01: Detect Ultrasonic Sensor
411 411  )))
412 412  
413 413  (((
414 -Valid Message Type:
439 +0x00: No Ultrasonic Sensor
415 415  )))
416 416  
417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
421 421  
422 -[[image:image-20230805150315-4.png||height="233" width="723"]]
443 +=== 2.3.6  Decode payload in The Things Network ===
423 423  
424 424  
425 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
446 +While using TTN network, you can add the payload format to decode the payload.
426 426  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
427 427  
428 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
450 +The payload decoder function for TTN V3 is here:
429 429  
430 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
431 -
432 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 -**Size(bytes)**
435 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
436 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
437 -Reserve(0xFF)
438 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
439 -LiDAR temp
440 -)))|(% style="width:85px" %)Unix TimeStamp
441 -
442 -**Interrupt flag & Interrupt level:**
443 -
444 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
445 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
446 -**Size(bit)**
447 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
448 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
449 -Interrupt flag
452 +(((
453 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
450 450  )))
451 451  
452 -* (((
453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
454 -)))
455 455  
456 -For example, in the US915 band, the max payload for different DR is:
457 +== 2.4  Uplink Interval ==
457 457  
458 -**a) DR0:** max is 11 bytes so one entry of data
459 459  
460 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
460 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
461 461  
462 -**c) DR2:** total payload includes 11 entries of data
463 463  
464 -**d) DR3:** total payload includes 22 entries of data.
463 +== 2.5  ​Show Data in DataCake IoT Server ==
465 465  
466 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
467 467  
468 -
469 -**Downlink:**
470 -
471 -0x31 64 CC 68 0C 64 CC 69 74 05
472 -
473 -[[image:image-20230805144936-2.png||height="113" width="746"]]
474 -
475 -**Uplink:**
476 -
477 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
478 -
479 -
480 -**Parsed Value:**
481 -
482 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
483 -
484 -
485 -[360,176,30,High,True,2023-08-04 02:53:00],
486 -
487 -[355,168,30,Low,False,2023-08-04 02:53:29],
488 -
489 -[245,211,30,Low,False,2023-08-04 02:54:29],
490 -
491 -[57,700,30,Low,False,2023-08-04 02:55:29],
492 -
493 -[361,164,30,Low,True,2023-08-04 02:56:00],
494 -
495 -[337,184,30,Low,False,2023-08-04 02:56:40],
496 -
497 -[20,4458,30,Low,False,2023-08-04 02:57:40],
498 -
499 -[362,173,30,Low,False,2023-08-04 02:58:53],
500 -
501 -
502 -**History read from serial port:**
503 -
504 -[[image:image-20230805145056-3.png]]
505 -
506 -
507 -=== 2.3.4 Decode payload in The Things Network ===
508 -
509 -
510 -While using TTN network, you can add the payload format to decode the payload.
511 -
512 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
513 -
514 -
515 515  (((
516 -The payload decoder function for TTN is here:
517 -)))
518 -
519 -(((
520 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
521 -)))
522 -
523 -
524 -== 2.4 ​Show Data in DataCake IoT Server ==
525 -
526 -
527 -(((
528 528  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
529 529  )))
530 530  
... ... @@ -556,13 +556,13 @@
556 556  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
557 557  
558 558  
559 -== 2.5 Datalog Feature ==
498 +== 2.6 Datalog Feature ==
560 560  
561 561  
562 562  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
563 563  
564 564  
565 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
504 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
566 566  
567 567  
568 568  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -579,7 +579,7 @@
579 579  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 580  
581 581  
582 -=== 2.5.2 Unix TimeStamp ===
521 +=== 2.6.2 Unix TimeStamp ===
583 583  
584 584  
585 585  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -596,7 +596,7 @@
596 596  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 597  
598 598  
599 -=== 2.5.3 Set Device Time ===
538 +=== 2.6.3 Set Device Time ===
600 600  
601 601  
602 602  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -606,13 +606,13 @@
606 606  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 607  
608 608  
609 -=== 2.5.4 Poll sensor value ===
548 +=== 2.6.4 Poll sensor value ===
610 610  
611 611  
612 612  Users can poll sensor values based on timestamps. Below is the downlink command.
613 613  
614 614  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
615 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
616 616  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
617 617  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
618 618  
... ... @@ -633,7 +633,7 @@
633 633  )))
634 634  
635 635  
636 -== 2.6 Frequency Plans ==
575 +== 2.7 Frequency Plans ==
637 637  
638 638  
639 639  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -641,90 +641,6 @@
641 641  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
642 642  
643 643  
644 -== 2.7 LiDAR ToF Measurement ==
645 -
646 -=== 2.7.1 Principle of Distance Measurement ===
647 -
648 -
649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 -
651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 -
653 -
654 -=== 2.7.2 Distance Measurement Characteristics ===
655 -
656 -
657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 -
659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 -
661 -
662 -(((
663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 -)))
665 -
666 -(((
667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 -)))
669 -
670 -(((
671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 -)))
673 -
674 -
675 -(((
676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 -)))
678 -
679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 -
681 -(((
682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 -)))
684 -
685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 -
687 -(((
688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 -)))
690 -
691 -
692 -=== 2.7.3 Notice of usage ===
693 -
694 -
695 -Possible invalid /wrong reading for LiDAR ToF tech:
696 -
697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 -
702 -=== 2.7.4  Reflectivity of different objects ===
703 -
704 -
705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 -Unpolished white metal surface
723 -)))|(% style="width:93px" %)130%
724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 -
728 728  = 3. Configure LDS12-LB =
729 729  
730 730  == 3.1 Configure Methods ==
... ... @@ -770,7 +770,7 @@
770 770  )))
771 771  
772 772  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
773 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
774 774  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
775 775  30000
776 776  OK
... ... @@ -806,24 +806,20 @@
806 806  === 3.3.2 Set Interrupt Mode ===
807 807  
808 808  
809 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
664 +Feature, Set Interrupt mode for PA8 of pin.
810 810  
811 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
666 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
812 812  
813 813  (% style="color:blue" %)**AT Command: AT+INTMOD**
814 814  
815 815  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
816 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
817 817  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
818 818  0
819 819  OK
820 820  the mode is 0 =Disable Interrupt
821 821  )))
822 -|(% style="width:154px" %)(((
823 -AT+INTMOD=2
824 -
825 -(default)
826 -)))|(% style="width:196px" %)(((
677 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
827 827  Set Transmit Interval
828 828  0. (Disable Interrupt),
829 829  ~1. (Trigger by rising and falling edge)
... ... @@ -841,35 +841,6 @@
841 841  
842 842  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
843 843  
844 -=== 3.3.3  Set Power Output Duration ===
845 -
846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
847 -
848 -~1. first enable the power output to external sensor,
849 -
850 -2. keep it on as per duration, read sensor value and construct uplink payload
851 -
852 -3. final, close the power output.
853 -
854 -(% style="color:blue" %)**AT Command: AT+3V3T**
855 -
856 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
859 -OK
860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
863 -
864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 -Format: Command Code (0x07) followed by 3 bytes.
866 -
867 -The first byte is 01,the second and third bytes are the time to turn on.
868 -
869 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
872 -
873 873  = 4. Battery & Power Consumption =
874 874  
875 875  
... ... @@ -890,7 +890,7 @@
890 890  
891 891  * Fix bugs.
892 892  
893 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
894 894  
895 895  Methods to Update Firmware:
896 896  
... ... @@ -918,11 +918,11 @@
918 918  
919 919  
920 920  (((
921 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
922 922  )))
923 923  
924 924  (((
925 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
747 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
926 926  )))
927 927  
928 928  
... ... @@ -931,7 +931,7 @@
931 931  )))
932 932  
933 933  (((
934 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
935 935  )))
936 936  
937 937  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content