Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,35 +19,41 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 34 -DS2 0Lsupports(% style="color:blue" %)**Datalogfeature**(%%).Itwill record thedatawhen thereis no network coverageand userscanretrieve the sensorvaluelatertoensure no miss forevery sensor reading.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 35 35 36 - [[image:image-20231110091506-4.png||height="391"width="768"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 37 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 + 40 + 39 39 == 1.2 Features == 40 40 41 41 42 -* LoRaWAN Class A protocol 43 -* LiDAR distance detector, range 3 ~~ 200cm 44 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Laser technology for distance detection 48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 +* Monitor Battery Level 51 +* Support Bluetooth v5.1 and LoRaWAN remote configure 52 +* Support wireless OTA update firmware 45 45 * AT Commands to change parameters 46 -* Remotely configure parameters via LoRaWAN Downlink 47 -* Alarm & Counting mode 48 -* Datalog Feature 49 -* Firmware upgradable via program port or LoRa protocol 50 -* Built-in 2400mAh battery or power by external power source 54 +* Downlink to change configure 55 +* 8500mAh Battery for long term use 51 51 52 52 == 1.3 Specification == 53 53 ... ... @@ -59,10 +59,20 @@ 59 59 60 60 (% style="color:#037691" %)**Probe Specification:** 61 61 62 -* Measure Range: 3cm~~200cm @ 90% reflectivity 63 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 64 -* ToF FoV: ±9°, Total 18° 65 -* Light source: VCSEL 67 +* Storage temperature:-20℃~~75℃ 68 +* Operating temperature : -20℃~~60℃ 69 +* Measure Distance: 70 +** 0.1m ~~ 12m @ 90% Reflectivity 71 +** 0.1m ~~ 4m @ 10% Reflectivity 72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 74 +* Ambient light immunity : 70klux 75 +* Enclosure rating : IP65 76 +* Light source : LED 77 +* Central wavelength : 850nm 78 +* FOV : 3.6° 79 +* Material of enclosure : ABS+PC 80 +* Wire length : 25cm 66 66 67 67 (% style="color:#037691" %)**LoRa Spec:** 68 68 ... ... @@ -84,28 +84,143 @@ 84 84 * Sleep Mode: 5uA @ 3.3v 85 85 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 86 86 87 -== 1.4 Applications==102 +== 1.4 Suitable Container & Liquid == 88 88 89 89 90 -* Horizontal distance measurement 91 -* Parking management system 92 -* Object proximity and presence detection 93 -* Intelligent trash can management system 94 -* Robot obstacle avoidance 95 -* Automatic control 96 -* Sewer 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 97 97 98 98 (% style="display:none" %) 99 99 100 -== 1.5 S leepmode and working mode==114 +== 1.5 Install LDS12-LB == 101 101 102 102 117 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 118 + 119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 120 + 121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 122 + 123 + 124 +((( 125 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 126 +))) 127 + 128 +((( 129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 130 +))) 131 + 132 +[[image:image-20230613143052-5.png]] 133 + 134 + 135 +No polish needed if the container is shine metal surface without paint or non-metal container. 136 + 137 +[[image:image-20230613143125-6.png]] 138 + 139 + 140 +((( 141 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 142 +))) 143 + 144 +((( 145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 146 +))) 147 + 148 +((( 149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 150 +))) 151 + 152 +((( 153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 154 +))) 155 + 156 + 157 +((( 158 +(% style="color:blue" %)**LED Status:** 159 +))) 160 + 161 +* ((( 162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 163 +))) 164 + 165 +* ((( 166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 167 +))) 168 +* ((( 169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 170 +))) 171 + 172 +((( 173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 174 +))) 175 + 176 + 177 +((( 178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 179 +))) 180 + 181 + 182 +((( 183 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 184 +))) 185 + 186 +((( 187 +Prepare Eproxy AB glue. 188 +))) 189 + 190 +((( 191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 192 +))) 193 + 194 +((( 195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 196 +))) 197 + 198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 199 + 200 + 201 +((( 202 +(% style="color:red" %)**Note :** 203 + 204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 205 +))) 206 + 207 +((( 208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 209 +))) 210 + 211 + 212 +== 1.6 Applications == 213 + 214 + 215 +* Smart liquid control solution 216 + 217 +* Smart liquefied gas solution 218 + 219 +== 1.7 Precautions == 220 + 221 + 222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 223 + 224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 225 + 226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 227 + 228 +(% style="display:none" %) 229 + 230 +== 1.8 Sleep mode and working mode == 231 + 232 + 103 103 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 104 104 105 105 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 106 107 107 108 -== 1. 6Button & LEDs ==238 +== 1.9 Button & LEDs == 109 109 110 110 111 111 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -112,7 +112,7 @@ 112 112 113 113 114 114 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**245 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 116 116 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 117 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 118 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -124,7 +124,7 @@ 124 124 ))) 125 125 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 126 127 -== 1. 7BLE connection ==257 +== 1.10 BLE connection == 128 128 129 129 130 130 LDS12-LB support BLE remote configure. ... ... @@ -138,12 +138,12 @@ 138 138 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 139 139 140 140 141 -== 1. 8Pin Definitions ==271 +== 1.11 Pin Definitions == 142 142 273 +[[image:image-20230523174230-1.png]] 143 143 144 -[[image:image-20230805144259-1.png||height="413" width="741"]] 145 145 146 -== 1. 9Mechanical ==276 +== 1.12 Mechanical == 147 147 148 148 149 149 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -158,6 +158,7 @@ 158 158 (% style="color:blue" %)**Probe Mechanical:** 159 159 160 160 291 + 161 161 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 162 162 163 163 ... ... @@ -177,7 +177,7 @@ 177 177 178 178 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 179 179 180 -[[image:image-2023 1110091447-3.png||height="383" width="752"]](% style="display:none" %)311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 181 181 182 182 183 183 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -221,118 +221,75 @@ 221 221 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 222 222 223 223 224 -== 2.3 Uplink Payload == 355 +== 2.3 Uplink Payload == 225 225 226 -=== 2.3.1 Device Status, FPORT~=5 === 227 227 358 +((( 359 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 360 +))) 228 228 229 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 362 +((( 363 +Uplink payload includes in total 8 bytes. 364 +))) 230 230 231 -The Payload format is as below. 232 - 233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 234 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 235 235 **Size(bytes)** 236 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 237 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 371 +[[Distance>>||anchor="H2.3.2A0Distance"]] 372 +(unit: mm) 373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 238 238 239 - ExampleparseTTNv3377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 240 240 241 -[[image:image-20230805103904-1.png||height="131" width="711"]] 242 242 243 - (%style="color:blue"%)**SensorModel**(%%): For LDS12-LB, this value is 0x24380 +=== 2.3.1 Battery Info === 244 244 245 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 246 246 247 - (%style="color:blue"%)**FrequencyBand**:383 +Check the battery voltage for LDS12-LB. 248 248 249 -0x01: EU868 250 - 251 -0x02: US915 252 - 253 -0x03: IN865 254 - 255 -0x04: AU915 256 - 257 -0x05: KZ865 258 - 259 -0x06: RU864 260 - 261 -0x07: AS923 262 - 263 -0x08: AS923-1 264 - 265 -0x09: AS923-2 266 - 267 -0x0a: AS923-3 268 - 269 -0x0b: CN470 270 - 271 -0x0c: EU433 272 - 273 -0x0d: KR920 274 - 275 -0x0e: MA869 276 - 277 -(% style="color:blue" %)**Sub-Band**: 278 - 279 -AU915 and US915:value 0x00 ~~ 0x08 280 - 281 -CN470: value 0x0B ~~ 0x0C 282 - 283 -Other Bands: Always 0x00 284 - 285 -(% style="color:blue" %)**Battery Info**: 286 - 287 -Check the battery voltage. 288 - 289 289 Ex1: 0x0B45 = 2885mV 290 290 291 291 Ex2: 0x0B49 = 2889mV 292 292 293 293 294 -=== 2.3.2 UplinkPayload, FPORT~=2===390 +=== 2.3.2 Distance === 295 295 296 296 297 297 ((( 298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 394 +Get the distance. Flat object range 20mm - 2000mm. 395 +))) 299 299 300 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 397 +((( 398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 301 301 302 - UplinkPayload totals11bytes.400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 303 303 ))) 304 304 305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 306 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 309 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 310 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 311 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 312 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 313 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 314 -[[Message Type>>||anchor="HMessageType"]] 315 -))) 403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 316 316 317 - [[image:image-20230805104104-2.png||height="136"width="754"]]405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 318 318 407 +=== 2.3.3 Interrupt Pin === 319 319 320 -==== (% style="color:blue" %)**Battery Info**(%%) ==== 321 321 410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 322 322 323 - Check the battery voltagefor LDS12-LB.412 +**Example:** 324 324 325 - Ex1:0x0B45= 2885mV414 +0x00: Normal uplink packet. 326 326 327 - Ex2:0x0B49=2889mV416 +0x01: Interrupt Uplink Packet. 328 328 329 329 330 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====419 +=== 2.3.4 DS18B20 Temperature sensor === 331 331 332 332 333 333 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 334 334 335 - 336 336 **Example**: 337 337 338 338 If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -340,191 +340,42 @@ 340 340 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 341 341 342 342 343 -=== =(%style="color:blue"%)**Distance**(%%)====431 +=== 2.3.5 Sensor Flag === 344 344 345 345 346 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 347 - 348 - 349 -**Example**: 350 - 351 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 352 - 353 - 354 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 355 - 356 - 357 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 358 - 359 - 360 -**Example**: 361 - 362 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 363 - 364 -Customers can judge whether they need to adjust the environment based on the signal strength. 365 - 366 - 367 -**1) When the sensor detects valid data:** 368 - 369 -[[image:image-20230805155335-1.png||height="145" width="724"]] 370 - 371 - 372 -**2) When the sensor detects invalid data:** 373 - 374 -[[image:image-20230805155428-2.png||height="139" width="726"]] 375 - 376 - 377 -**3) When the sensor is not connected:** 378 - 379 -[[image:image-20230805155515-3.png||height="143" width="725"]] 380 - 381 - 382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 383 - 384 - 385 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 386 - 387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 388 - 389 -**Example:** 390 - 391 -If byte[0]&0x01=0x00 : Normal uplink packet. 392 - 393 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 394 - 395 - 396 -==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 397 - 398 - 399 -Characterize the internal temperature value of the sensor. 400 - 401 -**Example: ** 402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 404 - 405 - 406 -==== (% style="color:blue" %)**Message Type**(%%) ==== 407 - 408 - 409 409 ((( 410 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 411 411 ))) 412 412 413 413 ((( 414 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 415 415 ))) 416 416 417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 421 421 422 - [[image:image-20230805150315-4.png||height="233"width="723"]]443 +=== 2.3.6 Decode payload in The Things Network === 423 423 424 424 425 - === 2.3.3 Historicalmeasuringdistance,FPORT~=3===446 +While using TTN network, you can add the payload format to decode the payload. 426 426 448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 427 427 428 - LDS12-LB storessensor valuesanduserscan retrievethese historyvaluesviathe [[downlinkcommand>>||anchor="H2.5.4Pollsensorvalue"]].450 +The payload decoder function for TTN V3 is here: 429 429 430 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 431 - 432 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 433 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 434 -**Size(bytes)** 435 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 436 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 437 -Reserve(0xFF) 438 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 439 -LiDAR temp 440 -)))|(% style="width:85px" %)Unix TimeStamp 441 - 442 -**Interrupt flag & Interrupt level:** 443 - 444 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 445 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 446 -**Size(bit)** 447 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 448 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 449 -Interrupt flag 452 +((( 453 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 450 450 ))) 451 451 452 -* ((( 453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 454 -))) 455 455 456 - Forexample,inthe US915 band,themax payloadfor different DR is:457 +== 2.4 Uplink Interval == 457 457 458 -**a) DR0:** max is 11 bytes so one entry of data 459 459 460 - **b)DR1:** maxis53 bytesso deviceswillupload4entriesof data(total 44 bytes)460 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 461 461 462 -**c) DR2:** total payload includes 11 entries of data 463 463 464 - **d)DR3:**totalpayloadincludes22entriesof data.463 +== 2.5 Show Data in DataCake IoT Server == 465 465 466 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 467 467 468 - 469 -**Downlink:** 470 - 471 -0x31 64 CC 68 0C 64 CC 69 74 05 472 - 473 -[[image:image-20230805144936-2.png||height="113" width="746"]] 474 - 475 -**Uplink:** 476 - 477 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 478 - 479 - 480 -**Parsed Value:** 481 - 482 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 483 - 484 - 485 -[360,176,30,High,True,2023-08-04 02:53:00], 486 - 487 -[355,168,30,Low,False,2023-08-04 02:53:29], 488 - 489 -[245,211,30,Low,False,2023-08-04 02:54:29], 490 - 491 -[57,700,30,Low,False,2023-08-04 02:55:29], 492 - 493 -[361,164,30,Low,True,2023-08-04 02:56:00], 494 - 495 -[337,184,30,Low,False,2023-08-04 02:56:40], 496 - 497 -[20,4458,30,Low,False,2023-08-04 02:57:40], 498 - 499 -[362,173,30,Low,False,2023-08-04 02:58:53], 500 - 501 - 502 -**History read from serial port:** 503 - 504 -[[image:image-20230805145056-3.png]] 505 - 506 - 507 -=== 2.3.4 Decode payload in The Things Network === 508 - 509 - 510 -While using TTN network, you can add the payload format to decode the payload. 511 - 512 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 513 - 514 - 515 515 ((( 516 -The payload decoder function for TTN is here: 517 -))) 518 - 519 -((( 520 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 521 -))) 522 - 523 - 524 -== 2.4 Show Data in DataCake IoT Server == 525 - 526 - 527 -((( 528 528 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 529 529 ))) 530 530 ... ... @@ -556,13 +556,13 @@ 556 556 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 557 557 558 558 559 -== 2. 5Datalog Feature ==498 +== 2.6 Datalog Feature == 560 560 561 561 562 562 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 563 563 564 564 565 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===504 +=== 2.6.1 Ways to get datalog via LoRaWAN === 566 566 567 567 568 568 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. ... ... @@ -579,7 +579,7 @@ 579 579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 580 580 581 581 582 -=== 2. 5.2 Unix TimeStamp ===521 +=== 2.6.2 Unix TimeStamp === 583 583 584 584 585 585 LDS12-LB uses Unix TimeStamp format based on ... ... @@ -596,7 +596,7 @@ 596 596 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 597 597 598 598 599 -=== 2. 5.3 Set Device Time ===538 +=== 2.6.3 Set Device Time === 600 600 601 601 602 602 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. ... ... @@ -606,13 +606,13 @@ 606 606 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 607 607 608 608 609 -=== 2. 5.4 Poll sensor value ===548 +=== 2.6.4 Poll sensor value === 610 610 611 611 612 612 Users can poll sensor values based on timestamps. Below is the downlink command. 613 613 614 614 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 615 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 616 616 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 617 617 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 618 618 ... ... @@ -633,7 +633,7 @@ 633 633 ))) 634 634 635 635 636 -== 2. 6Frequency Plans ==575 +== 2.7 Frequency Plans == 637 637 638 638 639 639 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -641,90 +641,6 @@ 641 641 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 642 642 643 643 644 -== 2.7 LiDAR ToF Measurement == 645 - 646 -=== 2.7.1 Principle of Distance Measurement === 647 - 648 - 649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 - 651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 - 653 - 654 -=== 2.7.2 Distance Measurement Characteristics === 655 - 656 - 657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 - 659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 - 661 - 662 -((( 663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 -))) 665 - 666 -((( 667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 -))) 669 - 670 -((( 671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 -))) 673 - 674 - 675 -((( 676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 -))) 678 - 679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 - 681 -((( 682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 -))) 684 - 685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 - 687 -((( 688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 -))) 690 - 691 - 692 -=== 2.7.3 Notice of usage === 693 - 694 - 695 -Possible invalid /wrong reading for LiDAR ToF tech: 696 - 697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 - 702 -=== 2.7.4 Reflectivity of different objects === 703 - 704 - 705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 -Unpolished white metal surface 723 -)))|(% style="width:93px" %)130% 724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 - 728 728 = 3. Configure LDS12-LB = 729 729 730 730 == 3.1 Configure Methods == ... ... @@ -770,7 +770,7 @@ 770 770 ))) 771 771 772 772 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 773 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 774 774 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 775 775 30000 776 776 OK ... ... @@ -806,24 +806,20 @@ 806 806 === 3.3.2 Set Interrupt Mode === 807 807 808 808 809 -Feature, Set Interrupt mode for pinofGPIO_EXTI.664 +Feature, Set Interrupt mode for PA8 of pin. 810 810 811 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.666 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 812 812 813 813 (% style="color:blue" %)**AT Command: AT+INTMOD** 814 814 815 815 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 816 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 817 817 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 818 818 0 819 819 OK 820 820 the mode is 0 =Disable Interrupt 821 821 ))) 822 -|(% style="width:154px" %)((( 823 -AT+INTMOD=2 824 - 825 -(default) 826 -)))|(% style="width:196px" %)((( 677 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 827 827 Set Transmit Interval 828 828 0. (Disable Interrupt), 829 829 ~1. (Trigger by rising and falling edge) ... ... @@ -841,35 +841,6 @@ 841 841 842 842 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 843 843 844 -=== 3.3.3 Set Power Output Duration === 845 - 846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 847 - 848 -~1. first enable the power output to external sensor, 849 - 850 -2. keep it on as per duration, read sensor value and construct uplink payload 851 - 852 -3. final, close the power output. 853 - 854 -(% style="color:blue" %)**AT Command: AT+3V3T** 855 - 856 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 859 -OK 860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 863 - 864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 -Format: Command Code (0x07) followed by 3 bytes. 866 - 867 -The first byte is 01,the second and third bytes are the time to turn on. 868 - 869 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 872 - 873 873 = 4. Battery & Power Consumption = 874 874 875 875 ... ... @@ -890,7 +890,7 @@ 890 890 891 891 * Fix bugs. 892 892 893 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 894 894 895 895 Methods to Update Firmware: 896 896 ... ... @@ -918,11 +918,11 @@ 918 918 919 919 920 920 ((( 921 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 922 922 ))) 923 923 924 924 ((( 925 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.747 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 926 926 ))) 927 927 928 928 ... ... @@ -931,7 +931,7 @@ 931 931 ))) 932 932 933 933 ((( 934 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 935 935 ))) 936 936 937 937
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content