Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version
To version 80.3
edited by Xiaoling
on 2023/06/14 15:53
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,36 +19,45 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
32 +LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
35 35  
36 -[[image:image-20231110091506-4.png||height="391" width="768"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 37  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 +
40 +
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN Class A protocol
43 -* LiDAR distance detector, range 3 ~~ 200cm
44 -* Periodically detect or continuously detect mode
44 +* LoRaWAN 1.0.3 Class A
45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 +* Ultra-low power consumption
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
52 +* Support Bluetooth v5.1 and LoRaWAN remote configure
53 +* Support wireless OTA update firmware
45 45  * AT Commands to change parameters
46 -* Remotely configure parameters via LoRaWAN Downlink
47 -* Alarm & Counting mode
48 -* Datalog Feature
49 -* Firmware upgradable via program port or LoRa protocol
50 -* Built-in 2400mAh battery or power by external power source
55 +* Downlink to change configure
56 +* IP66 Waterproof Enclosure
57 +* 8500mAh Battery for long term use
51 51  
59 +
52 52  == 1.3 Specification ==
53 53  
54 54  
... ... @@ -57,13 +57,6 @@
57 57  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
58 58  * Operating Temperature: -40 ~~ 85°C
59 59  
60 -(% style="color:#037691" %)**Probe Specification:**
61 -
62 -* Measure Range: 3cm~~200cm @ 90% reflectivity
63 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
64 -* ToF FoV: ±9°, Total 18°
65 -* Light source: VCSEL
66 -
67 67  (% style="color:#037691" %)**LoRa Spec:**
68 68  
69 69  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -84,447 +84,377 @@
84 84  * Sleep Mode: 5uA @ 3.3v
85 85  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
86 86  
87 -== 1.4 Applications ==
88 88  
89 +== 1.4 Suitable Container & Liquid ==
89 89  
90 -* Horizontal distance measurement
91 -* Parking management system
92 -* Object proximity and presence detection
93 -* Intelligent trash can management system
94 -* Robot obstacle avoidance
95 -* Automatic control
96 -* Sewer
97 97  
98 -(% style="display:none" %)
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
99 99  
100 -== 1.5 Sleep mode and working mode ==
101 101  
100 +(% style="display:none" %)
102 102  
103 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
102 +== 1.5 Install DDS20-LB ==
104 104  
105 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 106  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
107 107  
108 -== 1.6 Button & LEDs ==
107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
109 109  
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 110  
111 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 112  
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
113 113  
114 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
116 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
119 119  )))
120 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
121 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
122 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
123 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
124 -)))
125 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 126  
127 -== 1.7 BLE connection ==
120 +[[image:image-20230613143052-5.png]]
128 128  
129 129  
130 -LDS12-LB support BLE remote configure.
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
131 131  
132 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
125 +[[image:image-20230613143125-6.png]]
133 133  
134 -* Press button to send an uplink
135 -* Press button to active device.
136 -* Device Power on or reset.
137 137  
138 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
139 139  
132 +(((
133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
140 140  
141 -== 1.8 Pin Definitions ==
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
138 +)))
142 142  
140 +(((
141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 143  
144 -[[image:image-20230805144259-1.png||height="413" width="741"]]
145 145  
146 -== 1.9 Mechanical ==
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
147 147  
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
148 148  
149 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
150 150  
160 +(((
161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
151 151  
152 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
153 153  
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
154 154  
155 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 156  
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
157 157  
158 -(% style="color:blue" %)**Probe Mechanical:**
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
159 159  
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
160 160  
161 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
182 +(((
183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 +)))
162 162  
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
163 163  
164 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
165 165  
166 -== 2.1 How it works ==
189 +(((
190 +(% style="color:red" %)**Note :**
167 167  
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
168 168  
169 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
170 170  
171 -(% style="display:none" %) (%%)
172 172  
173 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
200 +== 1.6 Applications ==
174 174  
175 175  
176 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
203 +* Smart liquid control solution
177 177  
178 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
205 +* Smart liquefied gas solution
179 179  
180 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
181 181  
208 +== 1.7 Precautions ==
182 182  
183 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
184 184  
185 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
186 186  
187 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
188 188  
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
189 189  
190 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
217 +(% style="display:none" %)
191 191  
219 +== 1.8 Sleep mode and working mode ==
192 192  
193 -(% style="color:blue" %)**Register the device**
194 194  
195 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
222 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
196 196  
224 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
197 197  
198 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
199 199  
200 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
227 +== 1.9 Button & LEDs ==
201 201  
202 202  
203 -(% style="color:blue" %)**Add APP EUI in the application**
230 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
204 204  
205 205  
206 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
235 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
236 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
237 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
238 +)))
239 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
240 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
241 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
242 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
243 +)))
244 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
207 207  
208 208  
209 -(% style="color:blue" %)**Add APP KEY**
247 +== 1.10 BLE connection ==
210 210  
211 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
212 212  
250 +DDS20-LB support BLE remote configure.
213 213  
214 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
252 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
215 215  
254 +* Press button to send an uplink
255 +* Press button to active device.
256 +* Device Power on or reset.
216 216  
217 -Press the button for 5 seconds to activate the LDS12-LB.
258 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
218 218  
219 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
220 220  
221 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
261 +== 1.11 Pin Definitions ==
222 222  
263 +[[image:image-20230523174230-1.png]]
223 223  
224 -== 2.3 ​Uplink Payload ==
225 225  
226 -=== 2.3.1 Device Status, FPORT~=5 ===
266 +== 1.12 Mechanical ==
227 227  
228 228  
229 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
269 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
230 230  
231 -The Payload format is as below.
232 232  
233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
235 -**Size(bytes)**
236 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
237 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
272 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
238 238  
239 -Example parse in TTNv3
240 240  
241 -[[image:image-20230805103904-1.png||height="131" width="711"]]
275 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
242 242  
243 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
244 244  
245 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
278 +(% style="color:blue" %)**Probe Mechanical:**
246 246  
247 -(% style="color:blue" %)**Frequency Band**:
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
248 248  
249 -0x01: EU868
250 250  
251 -0x02: US915
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
252 252  
253 -0x03: IN865
254 254  
255 -0x04: AU915
286 += 2. Configure DDS20-LB to connect to LoRaWAN network =
256 256  
257 -0x05: KZ865
288 +== 2.1 How it works ==
258 258  
259 -0x06: RU864
260 260  
261 -0x07: AS923
291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
262 262  
263 -0x08: AS923-1
293 +(% style="display:none" %) (%%)
264 264  
265 -0x09: AS923-2
295 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
266 266  
267 -0x0a: AS923-3
268 268  
269 -0x0b: CN470
298 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
270 270  
271 -0x0c: EU433
300 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
272 272  
273 -0x0d: KR920
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
274 274  
275 -0x0e: MA869
276 276  
277 -(% style="color:blue" %)**Sub-Band**:
305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
278 278  
279 -AU915 and US915:value 0x00 ~~ 0x08
307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
280 280  
281 -CN470: value 0x0B ~~ 0x0C
309 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
282 282  
283 -Other Bands: Always 0x00
284 284  
285 -(% style="color:blue" %)**Battery Info**:
312 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
286 286  
287 -Check the battery voltage.
288 288  
289 -Ex1: 0x0B45 = 2885mV
315 +(% style="color:blue" %)**Register the device**
290 290  
291 -Ex2: 0x0B49 = 2889mV
317 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
292 292  
293 293  
294 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
320 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
295 295  
322 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
296 296  
297 -(((
298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
299 299  
300 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
325 +(% style="color:blue" %)**Add APP EUI in the application**
301 301  
302 -Uplink Payload totals 11 bytes.
303 -)))
304 304  
305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
306 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
307 -**Size(bytes)**
308 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
309 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
310 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
311 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
312 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
313 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
314 -[[Message Type>>||anchor="HMessageType"]]
315 -)))
328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
316 316  
317 -[[image:image-20230805104104-2.png||height="136" width="754"]]
318 318  
331 +(% style="color:blue" %)**Add APP KEY**
319 319  
320 -==== (% style="color:blue" %)**Battery Info**(%%) ====
333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
321 321  
322 322  
323 -Check the battery voltage for LDS12-LB.
336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
324 324  
325 -Ex1: 0x0B45 = 2885mV
326 326  
327 -Ex2: 0x0B49 = 2889mV
339 +Press the button for 5 seconds to activate the DDS20-LB.
328 328  
341 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
329 329  
330 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
343 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
331 331  
332 332  
333 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
346 +== 2.3  ​Uplink Payload ==
334 334  
335 335  
336 -**Example**:
349 +(((
350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
351 +)))
337 337  
338 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
353 +(((
354 +Uplink payload includes in total 8 bytes.
355 +)))
339 339  
340 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
359 +**Size(bytes)**
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
341 341  
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
342 342  
343 -==== (% style="color:blue" %)**Distance**(%%) ====
344 344  
371 +=== 2.3.1  Battery Info ===
345 345  
346 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
347 347  
374 +Check the battery voltage for DDS20-LB.
348 348  
349 -**Example**:
376 +Ex1: 0x0B45 = 2885mV
350 350  
351 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
378 +Ex2: 0x0B49 = 2889mV
352 352  
353 353  
354 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
381 +=== 2.3.2  Distance ===
355 355  
356 356  
357 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
358 358  
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
359 359  
360 -**Example**:
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
361 361  
362 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
363 363  
364 -Customers can judge whether they need to adjust the environment based on the signal strength.
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
365 365  
366 366  
367 -**1) When the sensor detects valid data:**
399 +=== 2.3.3  Interrupt Pin ===
368 368  
369 -[[image:image-20230805155335-1.png||height="145" width="724"]]
370 370  
371 -
372 -**2) When the sensor detects invalid data:**
373 -
374 -[[image:image-20230805155428-2.png||height="139" width="726"]]
375 -
376 -
377 -**3) When the sensor is not connected:**
378 -
379 -[[image:image-20230805155515-3.png||height="143" width="725"]]
380 -
381 -
382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
383 -
384 -
385 385  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386 386  
387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
388 -
389 389  **Example:**
390 390  
391 -If byte[0]&0x01=0x00 : Normal uplink packet.
406 +0x00: Normal uplink packet.
392 392  
393 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
408 +0x01: Interrupt Uplink Packet.
394 394  
395 395  
396 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
411 +=== 2.3.4  DS18B20 Temperature sensor ===
397 397  
398 398  
399 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
400 400  
401 -**Example: **
402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
404 404  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
405 405  
406 -==== (% style="color:blue" %)**Message Type**(%%) ====
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
407 407  
408 408  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
409 409  (((
410 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
411 411  )))
412 412  
413 413  (((
414 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
415 415  )))
416 416  
417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
421 421  
422 -[[image:image-20230805150315-4.png||height="233" width="723"]]
435 +=== 2.3.6  Decode payload in The Things Network ===
423 423  
424 424  
425 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
438 +While using TTN network, you can add the payload format to decode the payload.
426 426  
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
427 427  
428 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
442 +The payload decoder function for TTN V3 is here:
429 429  
430 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
431 -
432 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 -**Size(bytes)**
435 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
436 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
437 -Reserve(0xFF)
438 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
439 -LiDAR temp
440 -)))|(% style="width:85px" %)Unix TimeStamp
441 -
442 -**Interrupt flag & Interrupt level:**
443 -
444 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
445 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
446 -**Size(bit)**
447 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
448 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
449 -Interrupt flag
444 +(((
445 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
450 450  )))
451 451  
452 -* (((
453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
454 -)))
455 455  
456 -For example, in the US915 band, the max payload for different DR is:
449 +== 2.4  Uplink Interval ==
457 457  
458 -**a) DR0:** max is 11 bytes so one entry of data
459 459  
460 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
461 461  
462 -**c) DR2:** total payload includes 11 entries of data
463 463  
464 -**d) DR3:** total payload includes 22 entries of data.
455 +== 2.5  ​Show Data in DataCake IoT Server ==
465 465  
466 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
467 467  
468 -
469 -**Downlink:**
470 -
471 -0x31 64 CC 68 0C 64 CC 69 74 05
472 -
473 -[[image:image-20230805144936-2.png||height="113" width="746"]]
474 -
475 -**Uplink:**
476 -
477 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
478 -
479 -
480 -**Parsed Value:**
481 -
482 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
483 -
484 -
485 -[360,176,30,High,True,2023-08-04 02:53:00],
486 -
487 -[355,168,30,Low,False,2023-08-04 02:53:29],
488 -
489 -[245,211,30,Low,False,2023-08-04 02:54:29],
490 -
491 -[57,700,30,Low,False,2023-08-04 02:55:29],
492 -
493 -[361,164,30,Low,True,2023-08-04 02:56:00],
494 -
495 -[337,184,30,Low,False,2023-08-04 02:56:40],
496 -
497 -[20,4458,30,Low,False,2023-08-04 02:57:40],
498 -
499 -[362,173,30,Low,False,2023-08-04 02:58:53],
500 -
501 -
502 -**History read from serial port:**
503 -
504 -[[image:image-20230805145056-3.png]]
505 -
506 -
507 -=== 2.3.4 Decode payload in The Things Network ===
508 -
509 -
510 -While using TTN network, you can add the payload format to decode the payload.
511 -
512 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
513 -
514 -
515 515  (((
516 -The payload decoder function for TTN is here:
517 -)))
518 -
519 -(((
520 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
521 -)))
522 -
523 -
524 -== 2.4 ​Show Data in DataCake IoT Server ==
525 -
526 -
527 -(((
528 528  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
529 529  )))
530 530  
... ... @@ -546,7 +546,7 @@
546 546  
547 547  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
548 548  
549 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
550 550  
551 551  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
552 552  
... ... @@ -556,22 +556,22 @@
556 556  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
557 557  
558 558  
559 -== 2.5 Datalog Feature ==
490 +== 2.6 Datalog Feature ==
560 560  
561 561  
562 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
563 563  
564 564  
565 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
496 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
566 566  
567 567  
568 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
569 569  
570 570  * (((
571 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
572 572  )))
573 573  * (((
574 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
575 575  )))
576 576  
577 577  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -579,10 +579,10 @@
579 579  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 580  
581 581  
582 -=== 2.5.2 Unix TimeStamp ===
513 +=== 2.6.2 Unix TimeStamp ===
583 583  
584 584  
585 -LDS12-LB uses Unix TimeStamp format based on
516 +DDS20-LB uses Unix TimeStamp format based on
586 586  
587 587  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
588 588  
... ... @@ -596,23 +596,23 @@
596 596  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
597 597  
598 598  
599 -=== 2.5.3 Set Device Time ===
530 +=== 2.6.3 Set Device Time ===
600 600  
601 601  
602 602  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
603 603  
604 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
605 605  
606 606  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 607  
608 608  
609 -=== 2.5.4 Poll sensor value ===
540 +=== 2.6.4 Poll sensor value ===
610 610  
611 611  
612 612  Users can poll sensor values based on timestamps. Below is the downlink command.
613 613  
614 614  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
615 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
616 616  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
617 617  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
618 618  
... ... @@ -629,108 +629,24 @@
629 629  )))
630 630  
631 631  (((
632 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
633 633  )))
634 634  
635 635  
636 -== 2.6 Frequency Plans ==
567 +== 2.7 Frequency Plans ==
637 637  
638 638  
639 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
640 640  
641 641  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
642 642  
643 643  
644 -== 2.7 LiDAR ToF Measurement ==
575 += 3. Configure DDS20-LB =
645 645  
646 -=== 2.7.1 Principle of Distance Measurement ===
647 -
648 -
649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 -
651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 -
653 -
654 -=== 2.7.2 Distance Measurement Characteristics ===
655 -
656 -
657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 -
659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 -
661 -
662 -(((
663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 -)))
665 -
666 -(((
667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 -)))
669 -
670 -(((
671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 -)))
673 -
674 -
675 -(((
676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 -)))
678 -
679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 -
681 -(((
682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 -)))
684 -
685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 -
687 -(((
688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 -)))
690 -
691 -
692 -=== 2.7.3 Notice of usage ===
693 -
694 -
695 -Possible invalid /wrong reading for LiDAR ToF tech:
696 -
697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 -
702 -=== 2.7.4  Reflectivity of different objects ===
703 -
704 -
705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 -Unpolished white metal surface
723 -)))|(% style="width:93px" %)130%
724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 -
728 -= 3. Configure LDS12-LB =
729 -
730 730  == 3.1 Configure Methods ==
731 731  
732 732  
733 -LDS12-LB supports below configure method:
580 +DDS20-LB supports below configure method:
734 734  
735 735  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
736 736  
... ... @@ -738,6 +738,7 @@
738 738  
739 739  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
740 740  
588 +
741 741  == 3.2 General Commands ==
742 742  
743 743  
... ... @@ -752,10 +752,10 @@
752 752  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
753 753  
754 754  
755 -== 3.3 Commands special design for LDS12-LB ==
603 +== 3.3 Commands special design for DDS20-LB ==
756 756  
757 757  
758 -These commands only valid for LDS12-LB, as below:
606 +These commands only valid for DDS20-LB, as below:
759 759  
760 760  
761 761  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -770,7 +770,7 @@
770 770  )))
771 771  
772 772  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
773 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
774 774  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
775 775  30000
776 776  OK
... ... @@ -806,24 +806,20 @@
806 806  === 3.3.2 Set Interrupt Mode ===
807 807  
808 808  
809 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
657 +Feature, Set Interrupt mode for PA8 of pin.
810 810  
811 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
659 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
812 812  
813 813  (% style="color:blue" %)**AT Command: AT+INTMOD**
814 814  
815 815  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
816 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
817 817  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
818 818  0
819 819  OK
820 820  the mode is 0 =Disable Interrupt
821 821  )))
822 -|(% style="width:154px" %)(((
823 -AT+INTMOD=2
824 -
825 -(default)
826 -)))|(% style="width:196px" %)(((
670 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
827 827  Set Transmit Interval
828 828  0. (Disable Interrupt),
829 829  ~1. (Trigger by rising and falling edge)
... ... @@ -841,39 +841,11 @@
841 841  
842 842  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
843 843  
844 -=== 3.3.3  Set Power Output Duration ===
845 845  
846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
847 -
848 -~1. first enable the power output to external sensor,
849 -
850 -2. keep it on as per duration, read sensor value and construct uplink payload
851 -
852 -3. final, close the power output.
853 -
854 -(% style="color:blue" %)**AT Command: AT+3V3T**
855 -
856 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
859 -OK
860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
863 -
864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 -Format: Command Code (0x07) followed by 3 bytes.
866 -
867 -The first byte is 01,the second and third bytes are the time to turn on.
868 -
869 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
872 -
873 873  = 4. Battery & Power Consumption =
874 874  
875 875  
876 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
877 877  
878 878  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
879 879  
... ... @@ -882,7 +882,7 @@
882 882  
883 883  
884 884  (% class="wikigeneratedid" %)
885 -User can change firmware LDS12-LB to:
701 +User can change firmware DDS20-LB to:
886 886  
887 887  * Change Frequency band/ region.
888 888  
... ... @@ -890,7 +890,7 @@
890 890  
891 891  * Fix bugs.
892 892  
893 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
894 894  
895 895  Methods to Update Firmware:
896 896  
... ... @@ -898,40 +898,42 @@
898 898  
899 899  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
900 900  
717 +
901 901  = 6. FAQ =
902 902  
903 -== 6.1 What is the frequency plan for LDS12-LB? ==
720 +== 6.1  What is the frequency plan for DDS20-LB? ==
904 904  
905 905  
906 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
907 907  
908 908  
909 -= 7Trouble Shooting =
726 +== 6.2  Can I use DDS20-LB in condensation environment? ==
910 910  
911 -== 7.1 AT Command input doesn't work ==
912 912  
729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
913 913  
914 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
915 915  
732 += 7.  Trouble Shooting =
916 916  
917 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
734 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
918 918  
919 919  
920 -(((
921 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
922 -)))
737 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
923 923  
924 -(((
925 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
926 -)))
927 927  
740 +== 7.2  AT Command input doesn't work ==
928 928  
929 -(((
930 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
931 -)))
932 932  
743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
744 +
745 +
746 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
747 +
748 +
933 933  (((
934 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
751 +
752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
935 935  )))
936 936  
937 937  
... ... @@ -938,7 +938,7 @@
938 938  = 8. Order Info =
939 939  
940 940  
941 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
942 942  
943 943  (% style="color:red" %)**XXX**(%%): **The default frequency band**
944 944  
... ... @@ -958,12 +958,13 @@
958 958  
959 959  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
960 960  
779 +
961 961  = 9. ​Packing Info =
962 962  
963 963  
964 964  (% style="color:#037691" %)**Package Includes**:
965 965  
966 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
967 967  
968 968  (% style="color:#037691" %)**Dimension and weight**:
969 969  
... ... @@ -975,6 +975,7 @@
975 975  
976 976  * Weight / pcs : g
977 977  
797 +
978 978  = 10. Support =
979 979  
980 980  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content