Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 17 removed)
- image-20230614162334-2.png
- image-20230614162359-3.png
- image-20230615152941-1.png
- image-20230615153004-2.png
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,36 +19,45 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 34 -DS2 0Lsupports(% style="color:blue" %)**Datalogfeature**(%%).Itwill record thedatawhen thereis no network coverageand userscanretrieve the sensorvaluelatertoensure no miss forevery sensor reading.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 35 35 36 - [[image:image-20231110091506-4.png||height="391"width="768"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 37 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 38 +[[image:image-20230613140115-3.png||height="453" width="800"]] 39 + 40 + 39 39 == 1.2 Features == 40 40 41 41 42 -* LoRaWAN Class A protocol 43 -* LiDAR distance detector, range 3 ~~ 200cm 44 -* Periodically detect or continuously detect mode 44 +* LoRaWAN 1.0.3 Class A 45 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 +* Ultra-low power consumption 47 +* Liquid Level Measurement by Ultrasonic technology 48 +* Measure through container, No need to contact Liquid 49 +* Valid level range 20mm - 2000mm 50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value) 51 +* Cable Length : 25cm 52 +* Support Bluetooth v5.1 and LoRaWAN remote configure 53 +* Support wireless OTA update firmware 45 45 * AT Commands to change parameters 46 -* Remotely configure parameters via LoRaWAN Downlink 47 -* Alarm & Counting mode 48 -* Datalog Feature 49 -* Firmware upgradable via program port or LoRa protocol 50 -* Built-in 2400mAh battery or power by external power source 55 +* Downlink to change configure 56 +* IP66 Waterproof Enclosure 57 +* 8500mAh Battery for long term use 51 51 59 + 52 52 == 1.3 Specification == 53 53 54 54 ... ... @@ -57,13 +57,6 @@ 57 57 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 58 58 * Operating Temperature: -40 ~~ 85°C 59 59 60 -(% style="color:#037691" %)**Probe Specification:** 61 - 62 -* Measure Range: 3cm~~200cm @ 90% reflectivity 63 -* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 64 -* ToF FoV: ±9°, Total 18° 65 -* Light source: VCSEL 66 - 67 67 (% style="color:#037691" %)**LoRa Spec:** 68 68 69 69 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz ... ... @@ -84,447 +84,377 @@ 84 84 * Sleep Mode: 5uA @ 3.3v 85 85 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 86 86 87 -== 1.4 Applications == 88 88 89 +== 1.4 Suitable Container & Liquid == 89 89 90 -* Horizontal distance measurement 91 -* Parking management system 92 -* Object proximity and presence detection 93 -* Intelligent trash can management system 94 -* Robot obstacle avoidance 95 -* Automatic control 96 -* Sewer 97 97 98 -(% style="display:none" %) 92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 93 +* Container shape is regular, and surface is smooth. 94 +* Container Thickness: 95 +** Pure metal material. 2~~8mm, best is 3~~5mm 96 +** Pure non metal material: <10 mm 97 +* Pure liquid without irregular deposition. 99 99 100 -== 1.5 Sleep mode and working mode == 101 101 100 +(% style="display:none" %) 102 102 103 - (%style="color:blue"%)**DeepSleep Mode: **(%%)Sensor doesn't have anyLoRaWANactivate. This mode is used for storage and shipping to save battery life.102 +== 1.5 Install DDS20-LB == 104 104 105 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 106 105 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 107 107 108 -= =1.6Button&LEDs==107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 109 109 109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 110 110 111 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 112 112 +((( 113 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 114 +))) 113 113 114 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 116 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 116 +((( 117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 119 119 ))) 120 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 121 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 122 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 123 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 124 -))) 125 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 126 127 - ==1.7 BLE connection ==120 +[[image:image-20230613143052-5.png]] 128 128 129 129 130 - LDS12-LBsupportBLEremote configure.123 +No polish needed if the container is shine metal surface without paint or non-metal container. 131 131 132 - BLE can beused to configuretheparameter of sensor or see the console output from sensor. BLE will be only activate on below case:125 +[[image:image-20230613143125-6.png]] 133 133 134 -* Press button to send an uplink 135 -* Press button to active device. 136 -* Device Power on or reset. 137 137 138 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 128 +((( 129 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 130 +))) 139 139 132 +((( 133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 134 +))) 140 140 141 -== 1.8 Pin Definitions == 136 +((( 137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level. 138 +))) 142 142 140 +((( 141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 142 +))) 143 143 144 -[[image:image-20230805144259-1.png||height="413" width="741"]] 145 145 146 -== 1.9 Mechanical == 145 +((( 146 +(% style="color:blue" %)**LED Status:** 147 +))) 147 147 149 +* ((( 150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 151 +))) 148 148 149 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 153 +* ((( 154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 155 +))) 156 +* ((( 157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 158 +))) 150 150 160 +((( 161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 162 +))) 151 151 152 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 153 153 165 +((( 166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 167 +))) 154 154 155 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 156 156 170 +((( 171 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 172 +))) 157 157 158 -(% style="color:blue" %)**Probe Mechanical:** 174 +((( 175 +Prepare Eproxy AB glue. 176 +))) 159 159 178 +((( 179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 180 +))) 160 160 161 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 182 +((( 183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking. 184 +))) 162 162 186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 163 163 164 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 165 165 166 -== 2.1 How it works == 189 +((( 190 +(% style="color:red" %)**Note :** 167 167 192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 193 +))) 168 168 169 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 195 +((( 196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 197 +))) 170 170 171 -(% style="display:none" %) (%%) 172 172 173 -== 2.2Quick guidetoconnect to LoRaWANserver(OTAA)==200 +== 1.6 Applications == 174 174 175 175 176 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Belowis the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]]asa LoRaWAN gatewayinthis example.203 +* Smart liquid control solution 177 177 178 - TheLPS8v2 isalready setto connectedto[[TTN network >>url:https://console.cloud.thethings.network/]], so what weneed to now is configure the TTN server.205 +* Smart liquefied gas solution 179 179 180 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 181 181 208 +== 1.7 Precautions == 182 182 183 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. 184 184 185 - EachLDS12-LBisshippedwith a stickerwiththe default deviceEUIasbelow:211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 186 186 187 - [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png"height="233"width="502"]]213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 188 188 215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 189 189 190 - Youcan enter thiskeyinthe LoRaWAN Serverportal.Below is TTN screen shot:217 +(% style="display:none" %) 191 191 219 +== 1.8 Sleep mode and working mode == 192 192 193 -(% style="color:blue" %)**Register the device** 194 194 195 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]222 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 196 196 224 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 197 197 198 -(% style="color:blue" %)**Add APP EUI and DEV EUI** 199 199 200 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]227 +== 1.9 Button & LEDs == 201 201 202 202 203 - (%style="color:blue"%)**AddAPPEUI intheplication**230 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 204 204 205 205 206 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 235 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 236 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 237 +Meanwhile, BLE module will be active and user can connect via BLE to configure device. 238 +))) 239 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 240 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 241 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 242 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 243 +))) 244 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 207 207 208 208 209 - (% style="color:blue"%)**Add APP KEY**247 +== 1.10 BLE connection == 210 210 211 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 212 212 250 +DDS20-LB support BLE remote configure. 213 213 214 - (%style="color:blue"%)**Step2:**(%%)Activate onLDS12-LB252 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 215 215 254 +* Press button to send an uplink 255 +* Press button to active device. 256 +* Device Power on or reset. 216 216 217 - Pressthebuttonfor5secondstoactivate theLDS12-LB.258 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 218 218 219 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 220 220 221 - Afterjoinsuccess,it will start toupload messages to TTN and you canseethe messages in the panel.261 +== 1.11 Pin Definitions == 222 222 263 +[[image:image-20230523174230-1.png]] 223 223 224 -== 2.3 Uplink Payload == 225 225 226 -== =2.3.1Device Status,FPORT~=5===266 +== 1.12 Mechanical == 227 227 228 228 229 -User scansethe downlinkcommand(**0x2601**) toaskLDS12-LBtosend device configure detail, includedevice configurestatus. LDS12-LB will uplinkapayload via FPort=5 to server.269 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 230 230 231 -The Payload format is as below. 232 232 233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 234 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 235 -**Size(bytes)** 236 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 237 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 272 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 238 238 239 -Example parse in TTNv3 240 240 241 -[[image:i mage-20230805103904-1.png||height="131" width="711"]]275 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 242 242 243 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24 244 244 245 -(% style="color:blue" %)** FirmwareVersion**(%%): 0x0100,Means: v1.0.0 version278 +(% style="color:blue" %)**Probe Mechanical:** 246 246 247 - (% style="color:blue"%)**Frequency Band**:280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]] 248 248 249 -0x01: EU868 250 250 251 - 0x02: US915283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]] 252 252 253 -0x03: IN865 254 254 255 -0 x04:AU915286 += 2. Configure DDS20-LB to connect to LoRaWAN network = 256 256 257 - 0x05:KZ865288 +== 2.1 How it works == 258 258 259 -0x06: RU864 260 260 261 -0 x07:AS923291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 262 262 263 - 0x08:AS923-1293 +(% style="display:none" %) (%%) 264 264 265 - 0x09:AS923-2295 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 266 266 267 -0x0a: AS923-3 268 268 269 - 0x0b:CN470298 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 270 270 271 - 0x0c:EU433300 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 272 272 273 -0 x0d:KR920302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %) 274 274 275 -0x0e: MA869 276 276 277 -(% style="color:blue" %)**S ub-Band**:305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB. 278 278 279 - AU915andUS915:value0x00~~0x08307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below: 280 280 281 - CN470: value0x0B~~0x0C309 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 282 282 283 -Other Bands: Always 0x00 284 284 285 - (%style="color:blue"%)**BatteryInfo**:312 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 286 286 287 -Check the battery voltage. 288 288 289 - Ex1:0x0B45=2885mV315 +(% style="color:blue" %)**Register the device** 290 290 291 - Ex2:0x0B49=2889mV317 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]] 292 292 293 293 294 -= ==2.3.2UplinkPayload,FPORT~=2===320 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 295 295 322 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]] 296 296 297 -((( 298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 299 299 300 - periodically sendthisuplinkevery 20 minutes,this interval[[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].325 +(% style="color:blue" %)**Add APP EUI in the application** 301 301 302 -Uplink Payload totals 11 bytes. 303 -))) 304 304 305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 306 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 309 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 310 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 311 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 312 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 313 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 314 -[[Message Type>>||anchor="HMessageType"]] 315 -))) 328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]] 316 316 317 -[[image:image-20230805104104-2.png||height="136" width="754"]] 318 318 331 +(% style="color:blue" %)**Add APP KEY** 319 319 320 - ==== (% style="color:blue"%)**BatteryInfo**(%%)====333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 321 321 322 322 323 - ChecktheatteryvoltageforLDS12-LB.336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB 324 324 325 -Ex1: 0x0B45 = 2885mV 326 326 327 - Ex2:0x0B49=2889mV339 +Press the button for 5 seconds to activate the DDS20-LB. 328 328 341 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 329 329 330 - ====(%style="color:blue"%)**DS18B20Temperature sensor**(%%)====343 +After join success, it will start to upload messages to TTN and you can see the messages in the panel. 331 331 332 332 333 - Thisis optional, user can connect external DS18B20 sensor to the +3.3v,1-wire and GNDpin.and this field will report temperature.346 +== 2.3 Uplink Payload == 334 334 335 335 336 -**Example**: 349 +((( 350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 351 +))) 337 337 338 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 353 +((( 354 +Uplink payload includes in total 8 bytes. 355 +))) 339 339 340 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 359 +**Size(bytes)** 360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 362 +[[Distance>>||anchor="H2.3.2A0Distance"]] 363 +(unit: mm) 364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 341 341 368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 342 342 343 -==== (% style="color:blue" %)**Distance**(%%) ==== 344 344 371 +=== 2.3.1 Battery Info === 345 345 346 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 347 347 374 +Check the battery voltage for DDS20-LB. 348 348 349 - **Example**:376 +Ex1: 0x0B45 = 2885mV 350 350 351 - If the data you get from the register is 0x0B0xEA, the distance between the sensor and the measured object is0BEA(H)=3050 (D)/10 = 305cm.378 +Ex2: 0x0B49 = 2889mV 352 352 353 353 354 -=== =(%style="color:blue" %)**Distancesignal strength**(%%)====381 +=== 2.3.2 Distance === 355 355 356 356 357 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 384 +((( 385 +Get the distance. Flat object range 20mm - 2000mm. 386 +))) 358 358 388 +((( 389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 359 359 360 -**Example**: 391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 392 +))) 361 361 362 -If payload is: 01D7(H)=471(D), distance signal strength=471,471>100,471≠65535,themeasuredvalue of Distis consideredcredible.394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 363 363 364 - Customerscanjudge whether theyneedtoadjustthe environmentbasedonthesignalstrength.396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 365 365 366 366 367 - **1)Whenthesensordetectsvaliddata:**399 +=== 2.3.3 Interrupt Pin === 368 368 369 -[[image:image-20230805155335-1.png||height="145" width="724"]] 370 370 371 - 372 -**2) When the sensor detects invalid data:** 373 - 374 -[[image:image-20230805155428-2.png||height="139" width="726"]] 375 - 376 - 377 -**3) When the sensor is not connected:** 378 - 379 -[[image:image-20230805155515-3.png||height="143" width="725"]] 380 - 381 - 382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 383 - 384 - 385 385 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 386 386 387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 388 - 389 389 **Example:** 390 390 391 - If byte[0]&0x01=0x00: Normal uplink packet.406 +0x00: Normal uplink packet. 392 392 393 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.408 +0x01: Interrupt Uplink Packet. 394 394 395 395 396 -=== =(%style="color:blue"%)**LiDAR temp**(%%)====411 +=== 2.3.4 DS18B20 Temperature sensor === 397 397 398 398 399 - Characterizetheinternaltemperature valueofthesensor.414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 400 400 401 -**Example: ** 402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 416 +**Example**: 404 404 418 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 405 405 406 - ====(% style="color:blue"%)**MessageType**(%%) ====420 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 407 407 408 408 423 +=== 2.3.5 Sensor Flag === 424 + 425 + 409 409 ((( 410 - Fora normal uplink payload, themessagetypeis always0x01.427 +0x01: Detect Ultrasonic Sensor 411 411 ))) 412 412 413 413 ((( 414 - ValidMessage Type:431 +0x00: No Ultrasonic Sensor 415 415 ))) 416 416 417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 421 421 422 - [[image:image-20230805150315-4.png||height="233"width="723"]]435 +=== 2.3.6 Decode payload in The Things Network === 423 423 424 424 425 - === 2.3.3 Historicalmeasuringdistance,FPORT~=3===438 +While using TTN network, you can add the payload format to decode the payload. 426 426 440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 427 427 428 - LDS12-LB storessensor valuesanduserscan retrievethese historyvaluesviathe [[downlinkcommand>>||anchor="H2.5.4Pollsensorvalue"]].442 +The payload decoder function for TTN V3 is here: 429 429 430 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 431 - 432 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 433 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 434 -**Size(bytes)** 435 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 436 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 437 -Reserve(0xFF) 438 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 439 -LiDAR temp 440 -)))|(% style="width:85px" %)Unix TimeStamp 441 - 442 -**Interrupt flag & Interrupt level:** 443 - 444 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 445 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 446 -**Size(bit)** 447 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 448 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 449 -Interrupt flag 444 +((( 445 +DDS20-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 450 450 ))) 451 451 452 -* ((( 453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 454 -))) 455 455 456 - Forexample,inthe US915 band,themax payloadfor different DR is:449 +== 2.4 Uplink Interval == 457 457 458 -**a) DR0:** max is 11 bytes so one entry of data 459 459 460 - **b)DR1:** maxis53 bytesso deviceswillupload4entriesof data(total 44 bytes)452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 461 461 462 -**c) DR2:** total payload includes 11 entries of data 463 463 464 - **d)DR3:**totalpayloadincludes22entriesof data.455 +== 2.5 Show Data in DataCake IoT Server == 465 465 466 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 467 467 468 - 469 -**Downlink:** 470 - 471 -0x31 64 CC 68 0C 64 CC 69 74 05 472 - 473 -[[image:image-20230805144936-2.png||height="113" width="746"]] 474 - 475 -**Uplink:** 476 - 477 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 478 - 479 - 480 -**Parsed Value:** 481 - 482 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 483 - 484 - 485 -[360,176,30,High,True,2023-08-04 02:53:00], 486 - 487 -[355,168,30,Low,False,2023-08-04 02:53:29], 488 - 489 -[245,211,30,Low,False,2023-08-04 02:54:29], 490 - 491 -[57,700,30,Low,False,2023-08-04 02:55:29], 492 - 493 -[361,164,30,Low,True,2023-08-04 02:56:00], 494 - 495 -[337,184,30,Low,False,2023-08-04 02:56:40], 496 - 497 -[20,4458,30,Low,False,2023-08-04 02:57:40], 498 - 499 -[362,173,30,Low,False,2023-08-04 02:58:53], 500 - 501 - 502 -**History read from serial port:** 503 - 504 -[[image:image-20230805145056-3.png]] 505 - 506 - 507 -=== 2.3.4 Decode payload in The Things Network === 508 - 509 - 510 -While using TTN network, you can add the payload format to decode the payload. 511 - 512 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 513 - 514 - 515 515 ((( 516 -The payload decoder function for TTN is here: 517 -))) 518 - 519 -((( 520 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 521 -))) 522 - 523 - 524 -== 2.4 Show Data in DataCake IoT Server == 525 - 526 - 527 -((( 528 528 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 529 529 ))) 530 530 ... ... @@ -546,7 +546,7 @@ 546 546 547 547 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 548 548 549 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.** 550 550 551 551 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 552 552 ... ... @@ -556,22 +556,22 @@ 556 556 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 557 557 558 558 559 -== 2. 5Datalog Feature ==490 +== 2.6 Datalog Feature == 560 560 561 561 562 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes. 563 563 564 564 565 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===496 +=== 2.6.1 Ways to get datalog via LoRaWAN === 566 566 567 567 568 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 569 569 570 570 * ((( 571 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server. 572 572 ))) 573 573 * ((( 574 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LB gets a ACK,LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages. 575 575 ))) 576 576 577 577 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) ... ... @@ -579,10 +579,10 @@ 579 579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 580 580 581 581 582 -=== 2. 5.2 Unix TimeStamp ===513 +=== 2.6.2 Unix TimeStamp === 583 583 584 584 585 - LDS12-LB uses Unix TimeStamp format based on516 +DDS20-LB uses Unix TimeStamp format based on 586 586 587 587 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 588 588 ... ... @@ -596,23 +596,23 @@ 596 596 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 597 597 598 598 599 -=== 2. 5.3 Set Device Time ===530 +=== 2.6.3 Set Device Time === 600 600 601 601 602 602 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 603 603 604 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LB fails to get the time from the server,LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 605 605 606 606 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 607 607 608 608 609 -=== 2. 5.4 Poll sensor value ===540 +=== 2.6.4 Poll sensor value === 610 610 611 611 612 612 Users can poll sensor values based on timestamps. Below is the downlink command. 613 613 614 614 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 615 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 616 616 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 617 617 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 618 618 ... ... @@ -629,108 +629,24 @@ 629 629 ))) 630 630 631 631 ((( 632 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s. 633 633 ))) 634 634 635 635 636 -== 2. 6Frequency Plans ==567 +== 2.7 Frequency Plans == 637 637 638 638 639 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 640 640 641 641 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 642 642 643 643 644 -= =2.7LiDAR ToF Measurement==575 += 3. Configure DDS20-LB = 645 645 646 -=== 2.7.1 Principle of Distance Measurement === 647 - 648 - 649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 - 651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 - 653 - 654 -=== 2.7.2 Distance Measurement Characteristics === 655 - 656 - 657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 - 659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 - 661 - 662 -((( 663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 -))) 665 - 666 -((( 667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 -))) 669 - 670 -((( 671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 -))) 673 - 674 - 675 -((( 676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 -))) 678 - 679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 - 681 -((( 682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 -))) 684 - 685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 - 687 -((( 688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 -))) 690 - 691 - 692 -=== 2.7.3 Notice of usage === 693 - 694 - 695 -Possible invalid /wrong reading for LiDAR ToF tech: 696 - 697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 - 702 -=== 2.7.4 Reflectivity of different objects === 703 - 704 - 705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 -Unpolished white metal surface 723 -)))|(% style="width:93px" %)130% 724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 - 728 -= 3. Configure LDS12-LB = 729 - 730 730 == 3.1 Configure Methods == 731 731 732 732 733 - LDS12-LB supports below configure method:580 +DDS20-LB supports below configure method: 734 734 735 735 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 736 736 ... ... @@ -738,6 +738,7 @@ 738 738 739 739 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 740 740 588 + 741 741 == 3.2 General Commands == 742 742 743 743 ... ... @@ -752,10 +752,10 @@ 752 752 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 753 753 754 754 755 -== 3.3 Commands special design for LDS12-LB ==603 +== 3.3 Commands special design for DDS20-LB == 756 756 757 757 758 -These commands only valid for LDS12-LB, as below:606 +These commands only valid for DDS20-LB, as below: 759 759 760 760 761 761 === 3.3.1 Set Transmit Interval Time === ... ... @@ -770,7 +770,7 @@ 770 770 ))) 771 771 772 772 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 773 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 774 774 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 775 775 30000 776 776 OK ... ... @@ -806,24 +806,20 @@ 806 806 === 3.3.2 Set Interrupt Mode === 807 807 808 808 809 -Feature, Set Interrupt mode for pinofGPIO_EXTI.657 +Feature, Set Interrupt mode for PA8 of pin. 810 810 811 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.659 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 812 812 813 813 (% style="color:blue" %)**AT Command: AT+INTMOD** 814 814 815 815 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 816 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 817 817 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 818 818 0 819 819 OK 820 820 the mode is 0 =Disable Interrupt 821 821 ))) 822 -|(% style="width:154px" %)((( 823 -AT+INTMOD=2 824 - 825 -(default) 826 -)))|(% style="width:196px" %)((( 670 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 827 827 Set Transmit Interval 828 828 0. (Disable Interrupt), 829 829 ~1. (Trigger by rising and falling edge) ... ... @@ -841,39 +841,11 @@ 841 841 842 842 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 843 843 844 -=== 3.3.3 Set Power Output Duration === 845 845 846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 847 - 848 -~1. first enable the power output to external sensor, 849 - 850 -2. keep it on as per duration, read sensor value and construct uplink payload 851 - 852 -3. final, close the power output. 853 - 854 -(% style="color:blue" %)**AT Command: AT+3V3T** 855 - 856 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 859 -OK 860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 863 - 864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 -Format: Command Code (0x07) followed by 3 bytes. 866 - 867 -The first byte is 01,the second and third bytes are the time to turn on. 868 - 869 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 872 - 873 873 = 4. Battery & Power Consumption = 874 874 875 875 876 - LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 877 877 878 878 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 879 879 ... ... @@ -882,7 +882,7 @@ 882 882 883 883 884 884 (% class="wikigeneratedid" %) 885 -User can change firmware LDS12-LB to:701 +User can change firmware DDS20-LB to: 886 886 887 887 * Change Frequency band/ region. 888 888 ... ... @@ -890,7 +890,7 @@ 890 890 891 891 * Fix bugs. 892 892 893 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 894 894 895 895 Methods to Update Firmware: 896 896 ... ... @@ -898,40 +898,42 @@ 898 898 899 899 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 900 900 717 + 901 901 = 6. FAQ = 902 902 903 -== 6.1 What is the frequency plan for LDS12-LB? ==720 +== 6.1 What is the frequency plan for DDS20-LB? == 904 904 905 905 906 - LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 907 907 908 908 909 -= 7.Trouble Shooting=726 +== 6.2 Can I use DDS20-LB in condensation environment? == 910 910 911 -== 7.1 AT Command input doesn't work == 912 912 729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0. 913 913 914 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 915 915 732 += 7. Trouble Shooting = 916 916 917 -== 7. 2Significanterror betweentheoutputdistantvalueofLiDARandactual distance==734 +== 7.1 Why I can't join TTN V3 in US915 / AU915 bands? == 918 918 919 919 920 -((( 921 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.) 922 -))) 737 +It is due to channel mapping. Please see below link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 923 923 924 -((( 925 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice. 926 -))) 927 927 740 +== 7.2 AT Command input doesn't work == 928 928 929 -((( 930 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked. 931 -))) 932 932 743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 744 + 745 + 746 +== 7.3 Why i always see 0x0000 or 0 for the distance value? == 747 + 748 + 933 933 ((( 934 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter. 750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00. 751 + 752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify. 935 935 ))) 936 936 937 937 ... ... @@ -938,7 +938,7 @@ 938 938 = 8. Order Info = 939 939 940 940 941 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX** 942 942 943 943 (% style="color:red" %)**XXX**(%%): **The default frequency band** 944 944 ... ... @@ -958,12 +958,13 @@ 958 958 959 959 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 960 960 779 + 961 961 = 9. Packing Info = 962 962 963 963 964 964 (% style="color:#037691" %)**Package Includes**: 965 965 966 -* LDS12-LB LoRaWANLiDAR ToF Distance Sensor x 1785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1 967 967 968 968 (% style="color:#037691" %)**Dimension and weight**: 969 969 ... ... @@ -975,6 +975,7 @@ 975 975 976 976 * Weight / pcs : g 977 977 797 + 978 978 = 10. Support = 979 979 980 980
- image-20230614162334-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230614162359-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -88.3 KB - Content
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content