Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -22,7 +22,7 @@ 22 22 == 1.1 What is LoRaWAN Smart Distance Detector == 23 23 24 24 25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm. 26 26 27 27 DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 28 consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. ... ... @@ -31,9 +31,8 @@ 31 31 32 32 DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 33 33 34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 35 35 36 -[[image:image-20231110 091506-4.png||height="391" width="768"]]35 +[[image:image-20231110102635-5.png||height="402" width="807"]] 37 37 38 38 39 39 == 1.2 Features == ... ... @@ -45,128 +45,44 @@ 45 45 * AT Commands to change parameters 46 46 * Remotely configure parameters via LoRaWAN Downlink 47 47 * Alarm & Counting mode 48 -* Datalog Feature 49 49 * Firmware upgradable via program port or LoRa protocol 50 50 * Built-in 2400mAh battery or power by external power source 51 51 50 + 52 52 == 1.3 Specification == 53 53 54 54 55 -(% style="color:#037691" %)** CommonDCCharacteristics:**54 +(% style="color:#037691" %)**LiDAR Sensor:** 56 56 57 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 58 -* Operating Temperature: -40 ~~ 85°C 59 - 60 -(% style="color:#037691" %)**Probe Specification:** 61 - 56 +* Operation Temperature: -40 ~~ 80 °C 57 +* Operation Humidity: 0~~99.9%RH (no Dew) 58 +* Storage Temperature: -10 ~~ 45°C 62 62 * Measure Range: 3cm~~200cm @ 90% reflectivity 63 63 * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 64 64 * ToF FoV: ±9°, Total 18° 65 65 * Light source: VCSEL 66 66 67 -(% style="color:#037691" %)**LoRa Spec:** 68 68 69 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 70 -* Max +22 dBm constant RF output vs. 71 -* RX sensitivity: down to -139 dBm. 72 -* Excellent blocking immunity 65 +== 1.4 Power Consumption == 73 73 74 -(% style="color:#037691" %)**Battery:** 75 75 76 -* Li/SOCI2 un-chargeable battery 77 -* Capacity: 8500mAh 78 -* Self-Discharge: <1% / Year @ 25°C 79 -* Max continuously current: 130mA 80 -* Max boost current: 2A, 1 second 68 +(% style="color:#037691" %)**Battery Power Mode:** 81 81 82 -(% style="color:#037691" %)**Power Consumption** 70 +* Idle: 0.003 mA @ 3.3v 71 +* Max : 360 mA 83 83 84 -* Sleep Mode: 5uA @ 3.3v 85 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 73 +(% style="color:#037691" %)**Continuously mode**: 86 86 87 -== 1.4 Applications == 75 +* Idle: 21 mA @ 3.3v 76 +* Max : 360 mA 88 88 89 89 90 -* Horizontal distance measurement 91 -* Parking management system 92 -* Object proximity and presence detection 93 -* Intelligent trash can management system 94 -* Robot obstacle avoidance 95 -* Automatic control 96 -* Sewer 79 += 2. Configure DS20L to connect to LoRaWAN network = 97 97 98 -(% style="display:none" %) 99 - 100 -== 1.5 Sleep mode and working mode == 101 - 102 - 103 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 104 - 105 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 - 107 - 108 -== 1.6 Button & LEDs == 109 - 110 - 111 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 - 113 - 114 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 116 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 119 -))) 120 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 121 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 122 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 123 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 124 -))) 125 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 - 127 -== 1.7 BLE connection == 128 - 129 - 130 -LDS12-LB support BLE remote configure. 131 - 132 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 133 - 134 -* Press button to send an uplink 135 -* Press button to active device. 136 -* Device Power on or reset. 137 - 138 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 139 - 140 - 141 -== 1.8 Pin Definitions == 142 - 143 - 144 -[[image:image-20230805144259-1.png||height="413" width="741"]] 145 - 146 -== 1.9 Mechanical == 147 - 148 - 149 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 150 - 151 - 152 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 153 - 154 - 155 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 156 - 157 - 158 -(% style="color:blue" %)**Probe Mechanical:** 159 - 160 - 161 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 162 - 163 - 164 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 165 - 166 166 == 2.1 How it works == 167 167 168 168 169 -The LDS12-LBis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.84 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 170 170 171 171 (% style="display:none" %) (%%) 172 172 ... ... @@ -175,15 +175,14 @@ 175 175 176 176 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 177 177 178 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 93 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %) 179 179 180 -[[image:image-20231110 091447-3.png||height="383" width="752"]](% style="display:none" %)95 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %) 181 181 97 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 182 182 183 - (% style="color:blue"%)**Step1:**(%%)Createadevicein TTNwith theOTAAkeysfrom LDS12-LB.99 +Each DS20L is shipped with a sticker with the default device EUI as below: 184 184 185 -Each LDS12-LB is shipped with a sticker with the default device EUI as below: 186 - 187 187 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 188 188 189 189 ... ... @@ -211,10 +211,11 @@ 211 211 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 212 212 213 213 214 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB128 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L 215 215 130 +[[image:image-20231128133704-1.png||height="189" width="441"]] 216 216 217 -Press the button for 5 seconds to activate the LDS12-LB.132 +Press the button for 5 seconds to activate the DS20L. 218 218 219 219 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 220 220 ... ... @@ -226,7 +226,7 @@ 226 226 === 2.3.1 Device Status, FPORT~=5 === 227 227 228 228 229 -Users can use the downlink command(**0x26 01**) to ask LDS12-LBto send device configure detail, include device configure status.LDS12-LBwill uplink a payload via FPort=5 to server.144 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server. 230 230 231 231 The Payload format is as below. 232 232 ... ... @@ -238,9 +238,9 @@ 238 238 239 239 Example parse in TTNv3 240 240 241 -[[image: image-20230805103904-1.png||height="131" width="711"]]156 +[[image:1701149922873-259.png]] 242 242 243 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24158 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21 244 244 245 245 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 246 246 ... ... @@ -294,219 +294,120 @@ 294 294 === 2.3.2 Uplink Payload, FPORT~=2 === 295 295 296 296 297 -((( 298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 212 +==== (% style="color:red" %)**MOD~=1**(%%) ==== 299 299 300 - periodically send thisuplinkevery20minutes, thisinterval [[can bechanged>>||anchor="H3.3.1SetTransmitIntervalTime"]].214 +Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts. 301 301 302 -Uplink Payload totals 11 bytes. 303 -))) 216 +Uplink Payload totals 10 bytes. 304 304 305 305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 306 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 309 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 310 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 311 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 312 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 313 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 314 -[[Message Type>>||anchor="HMessageType"]] 315 -))) 219 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4** 220 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count 316 316 317 -[[image: image-20230805104104-2.png||height="136" width="754"]]222 +[[image:1701155076393-719.png]] 318 318 224 +(% style="color:blue" %)**Battery Info:** 319 319 320 - ====(% style="color:blue"%)**BatteryInfo**(%%)====226 +Check the battery voltage for DS20L 321 321 228 +Ex1: 0x0E10 = 3600mV 322 322 323 -Check the battery voltage for LDS12-LB. 324 324 325 - Ex1:0x0B45=2885mV231 +(% style="color:blue" %)**MOD & Alarm & Interrupt:** 326 326 327 - Ex2:0x0B49=2889mV233 +(% style="color:red" %)**MOD:** 328 328 235 +**Example: ** (0x60>>6) & 0x3f =1 329 329 330 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ==== 237 +**0x01:** Regularly detect distance and report. 238 +**0x02: ** Uninterrupted measurement (external power supply). 331 331 240 +(% style="color:red" %)**Alarm:** 332 332 333 - Thisisoptional,user canonnectexternal DS18B20 sensorto the+3.3v,1-wire and GND pin .andthisfieldwillreport temperature.242 +When the detection distance exceeds the limit, the alarm flag is set to 1. 334 334 244 +(% style="color:red" %)**Interrupt:** 335 335 336 - **Example**:246 +Whether it is an external interrupt. 337 337 338 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 339 339 340 - Ifpayload is:FF3FH : (FF3F & FC00 == 1),temp= (FF3FH - 65536)/10 = -19.3 degrees.249 +(% style="color:blue" %)**Distance info:** 341 341 342 - 343 -==== (% style="color:blue" %)**Distance**(%%) ==== 344 - 345 - 346 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 347 - 348 - 349 349 **Example**: 350 350 351 -If the datayouget from the registeris0x0B0xEA, thedistancebetweenthe sensor and the measured object is0BEA(H)=3050 (D)/10= 305cm.253 +If payload is: 0708H: distance = 0708H = 1800 mm 352 352 353 353 354 - ====(% style="color:blue" %)**Distancesignalstrength**(%%) ====256 +(% style="color:blue" %)**Sensor State:** 355 355 258 +Ex1: 0x00: Normal collection distance 356 356 357 - Refersto the signal strength, the default output value will be between0-65535. When the distance measurement gear is fixed,the farther the distancemeasurement is, the lower the signalstrength; thelower the target reflectivity, the lower the signalstrength. When Strengthisgreater than 100 and not equal to 65535, the measured value of Dist is considered credible.260 +Ex2 0x0x: Distance collection is wrong 358 358 359 359 360 - **Example**:263 +(% style="color:blue" %)**Interript Count:** 361 361 362 -If payload is: 1D7(H)=471(D),distance signal strength=471,471>100,471≠65535, the measured value ofDistis considered credible.265 +If payload is:000007D0H: count = 07D0H =2000 363 363 364 -Customers can judge whether they need to adjust the environment based on the signal strength. 365 365 366 366 367 - **1)Whenthesensor detects validdata:**269 +==== (% style="color:red" %)**MOD~=2**(%%)** ** ==== 368 368 369 - [[image:image-20230805155335-1.png||height="145"width="724"]]271 +Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes. 370 370 371 - 372 -**2) When the sensor detects invalid data:** 373 - 374 -[[image:image-20230805155428-2.png||height="139" width="726"]] 375 - 376 - 377 -**3) When the sensor is not connected:** 378 - 379 -[[image:image-20230805155515-3.png||height="143" width="725"]] 380 - 381 - 382 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 383 - 384 - 385 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 386 - 387 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 388 - 389 -**Example:** 390 - 391 -If byte[0]&0x01=0x00 : Normal uplink packet. 392 - 393 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 394 - 395 - 396 -==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 397 - 398 - 399 -Characterize the internal temperature value of the sensor. 400 - 401 -**Example: ** 402 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 403 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 404 - 405 - 406 -==== (% style="color:blue" %)**Message Type**(%%) ==== 407 - 408 - 409 -((( 410 -For a normal uplink payload, the message type is always 0x01. 411 -))) 412 - 413 -((( 414 -Valid Message Type: 415 -))) 416 - 417 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 418 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 419 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 420 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 421 - 422 -[[image:image-20230805150315-4.png||height="233" width="723"]] 423 - 424 - 425 -=== 2.3.3 Historical measuring distance, FPORT~=3 === 426 - 427 - 428 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 429 - 430 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 431 - 432 432 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 433 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 434 -**Size(bytes)** 435 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 436 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 437 -Reserve(0xFF) 438 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 439 -LiDAR temp 440 -)))|(% style="width:85px" %)Unix TimeStamp 274 +|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2** 275 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit 441 441 442 - **Interrupt flag& Interrupt level:**277 +[[image:1701155150328-206.png]] 443 443 444 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 445 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 446 -**Size(bit)** 447 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 448 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 449 -Interrupt flag 450 -))) 279 +(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:** 451 451 452 -* ((( 453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 454 -))) 281 +(% style="color:red" %)**MOD:** 455 455 456 - For example,inthe US915 band, the maxpayloadfordifferent DR is:283 +**Example: ** (0x60>>6) & 0x3f =1 457 457 458 -**a) DR0:** max is 11 bytes so one entry of data 285 +**0x01:** Regularly detect distance and report. 286 +**0x02: ** Uninterrupted measurement (external power supply). 459 459 460 - **b)DR1:** max is53 bytes so devices will upload 4 entries ofdata(total 44 bytes)288 +(% style="color:red" %)**Alarm:** 461 461 462 - **c)DR2:**totalpayload includes11entriesofdata290 +When the detection distance exceeds the limit, the alarm flag is set to 1. 463 463 464 - **d)DR3:**total payload includes 22 entriesof data.292 +(% style="color:red" %)**Do:** 465 465 466 - If LDS12-LB doesn'thave anydatainthe pollingtime.Itwill uplink11 bytes of 0294 +When the distance exceeds the set threshold, pull the Do pin high. 467 467 296 +(% style="color:red" %)**Limit flag:** 468 468 469 - **Downlink:**298 +Mode for setting threshold: 0~~5 470 470 471 -0 x3164CC680C64CC69 74 05300 +0: does not use upper and lower limits 472 472 473 - [[image:image-20230805144936-2.png||height="113"width="746"]]302 +1: Use upper and lower limits 474 474 475 - **Uplink:**304 +2: is less than the lower limit value 476 476 477 - 43FF0E1000B01E64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D306 +3: is greater than the lower limit value 478 478 308 +4: is less than the upper limit 479 479 480 - **ParsedValue:**310 +5: is greater than the upper limit 481 481 482 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 483 483 313 +(% style="color:blue" %)**Upper limit:** 484 484 485 - [360,176,30,High,True,2023-08-0402:53:00],315 +The upper limit of the threshold cannot exceed 2000mm. 486 486 487 -[355,168,30,Low,False,2023-08-04 02:53:29], 488 488 489 - [245,211,30,Low,False,2023-08-0402:54:29],318 +(% style="color:blue" %)**Lower limit:** 490 490 491 - [57,700,30,Low,False,2023-08-0402:55:29],320 +The lower limit of the threshold cannot be less than 3mm. 492 492 493 -[361,164,30,Low,True,2023-08-04 02:56:00], 494 494 495 - [337,184,30,Low,False,2023-08-0402:56:40],323 +=== 2.3.3 Decode payload in The Things Network === 496 496 497 -[20,4458,30,Low,False,2023-08-04 02:57:40], 498 498 499 -[362,173,30,Low,False,2023-08-04 02:58:53], 500 - 501 - 502 -**History read from serial port:** 503 - 504 -[[image:image-20230805145056-3.png]] 505 - 506 - 507 -=== 2.3.4 Decode payload in The Things Network === 508 - 509 - 510 510 While using TTN network, you can add the payload format to decode the payload. 511 511 512 512 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] ... ... @@ -517,7 +517,7 @@ 517 517 ))) 518 518 519 519 ((( 520 - LDS12-LBTTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]336 +DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 521 521 ))) 522 522 523 523 ... ... @@ -546,7 +546,7 @@ 546 546 547 547 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 548 548 549 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LBand add DevEUI.**365 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 550 550 551 551 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 552 552 ... ... @@ -553,184 +553,23 @@ 553 553 554 554 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 555 555 556 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]372 +[[image:image-20231129085201-1.png||height="515" width="961"]] 557 557 558 558 559 -== 2.5 DatalogFeature ==375 +== 2.5 Frequency Plans == 560 560 561 561 562 -D atalogFeature istoensureIoTServercanget allsamplingdatafromSensoreveniftheLoRaWANnetworkisdown.Forachsampling,LDS12-LB willstorethereadingforfutureretrievingpurposes.378 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 563 563 564 - 565 -=== 2.5.1 Ways to get datalog via LoRaWAN === 566 - 567 - 568 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 569 - 570 -* ((( 571 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server. 572 -))) 573 -* ((( 574 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 575 -))) 576 - 577 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 578 - 579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 580 - 581 - 582 -=== 2.5.2 Unix TimeStamp === 583 - 584 - 585 -LDS12-LB uses Unix TimeStamp format based on 586 - 587 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 588 - 589 -User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 590 - 591 -Below is the converter example 592 - 593 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 594 - 595 - 596 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 597 - 598 - 599 -=== 2.5.3 Set Device Time === 600 - 601 - 602 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 603 - 604 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 605 - 606 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 607 - 608 - 609 -=== 2.5.4 Poll sensor value === 610 - 611 - 612 -Users can poll sensor values based on timestamps. Below is the downlink command. 613 - 614 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 615 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 616 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 617 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 618 - 619 -((( 620 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval. 621 -))) 622 - 623 -((( 624 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]] 625 -))) 626 - 627 -((( 628 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data 629 -))) 630 - 631 -((( 632 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s. 633 -))) 634 - 635 - 636 -== 2.6 Frequency Plans == 637 - 638 - 639 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 640 - 641 641 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 642 642 643 643 644 -= =2.7LiDAR ToF Measurement==383 += 3. Configure DS20L = 645 645 646 -=== 2.7.1 Principle of Distance Measurement === 647 - 648 - 649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 - 651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 - 653 - 654 -=== 2.7.2 Distance Measurement Characteristics === 655 - 656 - 657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 - 659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 - 661 - 662 -((( 663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 -))) 665 - 666 -((( 667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 -))) 669 - 670 -((( 671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 -))) 673 - 674 - 675 -((( 676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 -))) 678 - 679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 - 681 -((( 682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 -))) 684 - 685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 - 687 -((( 688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 -))) 690 - 691 - 692 -=== 2.7.3 Notice of usage === 693 - 694 - 695 -Possible invalid /wrong reading for LiDAR ToF tech: 696 - 697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 - 702 -=== 2.7.4 Reflectivity of different objects === 703 - 704 - 705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 -Unpolished white metal surface 723 -)))|(% style="width:93px" %)130% 724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 - 728 -= 3. Configure LDS12-LB = 729 - 730 730 == 3.1 Configure Methods == 731 731 732 732 733 - LDS12-LBsupports below configure method:388 +DS20L supports below configure method: 734 734 735 735 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 736 736 ... ... @@ -752,10 +752,10 @@ 752 752 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 753 753 754 754 755 -== 3.3 Commands special design for LDS12-LB==410 +== 3.3 Commands special design for DS20L == 756 756 757 757 758 -These commands only valid for LDS12-LB, as below:413 +These commands only valid for DS20L, as below: 759 759 760 760 761 761 === 3.3.1 Set Transmit Interval Time === ... ... @@ -797,7 +797,7 @@ 797 797 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 798 798 ))) 799 799 * ((( 800 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 455 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 801 801 802 802 803 803 ... ... @@ -820,7 +820,7 @@ 820 820 the mode is 0 =Disable Interrupt 821 821 ))) 822 822 |(% style="width:154px" %)((( 823 -AT+INTMOD= 2478 +AT+INTMOD=3 824 824 825 825 (default) 826 826 )))|(% style="width:196px" %)((( ... ... @@ -841,39 +841,82 @@ 841 841 842 842 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 843 843 844 -== =3.3.3PowerOutput Duration===499 +== 3.3.3 Set work mode == 845 845 846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 847 847 848 - ~1. firstenable thepoweroutput to externalsensor,502 +Feature: Switch working mode 849 849 850 - 2.keep it on asper duration, read sensorvalueandconstruct uplink payload504 +(% style="color:blue" %)**AT Command: AT+MOD** 851 851 852 -3. final, close the power output. 506 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 507 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response** 508 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK 509 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)((( 510 +OK 511 +Attention:Take effect after ATZ 512 +))) 853 853 854 -(% style="color:blue" %)** ATCommand:AT+3V3T**514 +(% style="color:blue" %)**Downlink Command:** 855 855 516 +* **Example: **0x0A00 ~/~/ Same as AT+MOD=0 517 + 518 +* **Example:** 0x0A01 ~/~/ Same as AT+MOD=1 519 + 520 +=== 3.3.4 Set threshold and threshold mode === 521 + 522 + 523 +Feature, Set threshold and threshold mode 524 + 525 +When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms. 526 + 527 +(% style="color:blue" %)**AT Command: AT+DOL** 528 + 856 856 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 530 +|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response** 531 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)((( 532 +0,0,0,0,400 859 859 OK 860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 534 +))) 535 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK 863 863 864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 -Format: Command Code (0x07) followed by 3 bytes. 537 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 538 +|(% rowspan="11" style="color:blue; width:120px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits 539 +|(% style="width:251px" %)1: Use upper and lower limits 540 +|(% style="width:251px" %)2: Less than the lower limit 541 +|(% style="width:251px" %)3: Greater than the lower limit 542 +|(% style="width:251px" %)4: Less than the upper limit 543 +|(% style="width:251px" %)5: Greater than the upper limit 544 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM 545 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM 546 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high 547 +|(% style="width:251px" %)1 Person or object counting statistics 548 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)((( 549 +0~~10000ms 866 866 867 -The first byte is 01,the second and third bytes are the time to turn on. 551 + 552 +))) 868 868 869 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 554 +(% style="color:blue" %)**Downlink Command: 0x07** 872 872 556 +Format: Command Code (0x07) followed by 9bytes. 557 + 558 +* Example 0: Downlink Payload: 070000000000000190 **~-~-->** AT+MOD=0,0,0,0,400 559 + 560 +* Example 1: Downlink Payload: 070107080064000190 **~-~-->** AT+MOD=1,1800,100,0,400 561 + 562 +* Example 2: Downlink Payload: 070200000064000190 **~-~-->** AT+MOD=2,0,100,0,400 563 + 564 +* Example 3: Downlink Payload: 0703200000064000190 **~-~-->** AT+MOD=3,1800,100,0,400 565 + 566 +* Example 4: Downlink Payload: 070407080000000190 **~-~-->** AT+MOD=4,0,100,0,400 567 + 568 +* Example 5: Downlink Payload: 070507080000000190 **~-~-->** AT+MOD=5,1800,100,0,400 569 + 570 + 873 873 = 4. Battery & Power Consumption = 874 874 875 875 876 - LDS12-LBuseER26500+SPC1520battery pack. See below link for detail information about the battery info and how to replace.574 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace. 877 877 878 878 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 879 879 ... ... @@ -882,7 +882,7 @@ 882 882 883 883 884 884 (% class="wikigeneratedid" %) 885 -User can change firmware LDS12-LBto:583 +User can change firmware DS20L to: 886 886 887 887 * Change Frequency band/ region. 888 888 ... ... @@ -890,7 +890,7 @@ 890 890 891 891 * Fix bugs. 892 892 893 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**591 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]** 894 894 895 895 Methods to Update Firmware: 896 896 ... ... @@ -900,12 +900,39 @@ 900 900 901 901 = 6. FAQ = 902 902 903 -== 6.1 What is the frequency plan for LDS12-LB? ==601 +== 6.1 What is the frequency plan for DS20L? == 904 904 905 905 906 - LDS12-LBuse the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]604 +DS20L use the same frequency as other Dragino products. User can see the detail from this link: [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]] 907 907 908 908 607 +== 6.2 DS20L programming line == 608 + 609 + 610 +缺图 后续补上 611 + 612 +feature: 613 + 614 +for AT commands 615 + 616 +Update the firmware of DS20L 617 + 618 +Support interrupt mode 619 + 620 + 621 +== 6.3 LiDAR probe position == 622 + 623 + 624 +[[image:1701155390576-216.png||height="285" width="307"]] 625 + 626 +The black oval hole in the picture is the LiDAR probe. 627 + 628 + 629 +== 6.4 Interface definition == 630 + 631 +[[image:image-20231128151132-2.png||height="305" width="557"]] 632 + 633 + 909 909 = 7. Trouble Shooting = 910 910 911 911 == 7.1 AT Command input doesn't work == ... ... @@ -938,7 +938,7 @@ 938 938 = 8. Order Info = 939 939 940 940 941 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**666 +Part Number: (% style="color:blue" %)**DS20L-XXX** 942 942 943 943 (% style="color:red" %)**XXX**(%%): **The default frequency band** 944 944 ... ... @@ -963,7 +963,7 @@ 963 963 964 964 (% style="color:#037691" %)**Package Includes**: 965 965 966 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1691 +* DS20L LoRaWAN Smart Distance Detector x 1 967 967 968 968 (% style="color:#037691" %)**Dimension and weight**: 969 969
- 1701149922873-259.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.5 KB - Content
- 1701152902759-553.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.2 KB - Content
- 1701152946067-561.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +52.2 KB - Content
- 1701155076393-719.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.6 KB - Content
- 1701155150328-206.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +54.6 KB - Content
- 1701155390576-216.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +293.9 KB - Content
- image-20231110102635-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +84.7 KB - Content
- image-20231128133704-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +190.6 KB - Content
- image-20231128151132-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +281.2 KB - Content
- image-20231129085201-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.6 KB - Content