Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.4
edited by Xiaoling
on 2023/11/10 09:32
Change comment: There is no comment for this version
To version 113.7
edited by Xiaoling
on 2023/11/10 10:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -52,121 +52,26 @@
52 52  == 1.3 Specification ==
53 53  
54 54  
55 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
56 56  
57 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
58 -* Operating Temperature: -40 ~~ 85°C
59 -
60 -(% style="color:#037691" %)**Probe Specification:**
61 -
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
62 62  * Measure Range: 3cm~~200cm @ 90% reflectivity
63 63  * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
64 64  * ToF FoV: ±9°, Total 18°
65 65  * Light source: VCSEL
66 66  
67 -(% style="color:#037691" %)**LoRa Spec:**
68 68  
69 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
70 -* Max +22 dBm constant RF output vs.
71 -* RX sensitivity: down to -139 dBm.
72 -* Excellent blocking immunity
73 -
74 -(% style="color:#037691" %)**Battery:**
75 -
76 -* Li/SOCI2 un-chargeable battery
77 -* Capacity: 8500mAh
78 -* Self-Discharge: <1% / Year @ 25°C
79 -* Max continuously current: 130mA
80 -* Max boost current: 2A, 1 second
81 -
82 -(% style="color:#037691" %)**Power Consumption**
83 -
84 -* Sleep Mode: 5uA @ 3.3v
85 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
86 -
87 -== 1.4 Applications ==
88 -
89 -
90 -* Horizontal distance measurement
91 -* Parking management system
92 -* Object proximity and presence detection
93 -* Intelligent trash can management system
94 -* Robot obstacle avoidance
95 -* Automatic control
96 -* Sewer
97 -
98 98  (% style="display:none" %)
99 99  
100 -== 1.5 Sleep mode and working mode ==
101 101  
69 += 2. Configure DS20L to connect to LoRaWAN network =
102 102  
103 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
104 -
105 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
106 -
107 -
108 -== 1.6 Button & LEDs ==
109 -
110 -
111 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
112 -
113 -
114 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
115 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
116 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
117 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
118 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
119 -)))
120 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
121 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
122 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
123 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
124 -)))
125 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
126 -
127 -== 1.7 BLE connection ==
128 -
129 -
130 -LDS12-LB support BLE remote configure.
131 -
132 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
133 -
134 -* Press button to send an uplink
135 -* Press button to active device.
136 -* Device Power on or reset.
137 -
138 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
139 -
140 -
141 -== 1.8 Pin Definitions ==
142 -
143 -
144 -[[image:image-20230805144259-1.png||height="413" width="741"]]
145 -
146 -== 1.9 Mechanical ==
147 -
148 -
149 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
150 -
151 -
152 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
153 -
154 -
155 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 -
157 -
158 -(% style="color:blue" %)**Probe Mechanical:**
159 -
160 -
161 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
162 -
163 -
164 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
165 -
166 166  == 2.1 How it works ==
167 167  
168 168  
169 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
170 170  
171 171  (% style="display:none" %) (%%)
172 172  
... ... @@ -180,9 +180,9 @@
180 180  [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
181 181  
182 182  
183 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
184 184  
185 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
90 +Each DS20L is shipped with a sticker with the default device EUI as below:
186 186  
187 187  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
188 188  
... ... @@ -211,10 +211,10 @@
211 211  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
212 212  
213 213  
214 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
215 215  
216 216  
217 -Press the button for 5 seconds to activate the LDS12-LB.
122 +Press the button for 5 seconds to activate the DS20L.
218 218  
219 219  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
220 220  
... ... @@ -226,7 +226,7 @@
226 226  === 2.3.1 Device Status, FPORT~=5 ===
227 227  
228 228  
229 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
230 230  
231 231  The Payload format is as below.
232 232  
... ... @@ -240,7 +240,7 @@
240 240  
241 241  [[image:image-20230805103904-1.png||height="131" width="711"]]
242 242  
243 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
244 244  
245 245  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
246 246  
... ... @@ -295,7 +295,7 @@
295 295  
296 296  
297 297  (((
298 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
299 299  
300 300  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
301 301  
... ... @@ -320,7 +320,7 @@
320 320  ==== (% style="color:blue" %)**Battery Info**(%%) ====
321 321  
322 322  
323 -Check the battery voltage for LDS12-LB.
228 +Check the battery voltage for DS20L.
324 324  
325 325  Ex1: 0x0B45 = 2885mV
326 326  
... ... @@ -425,7 +425,7 @@
425 425  === 2.3.3 Historical measuring distance, FPORT~=3 ===
426 426  
427 427  
428 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
429 429  
430 430  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
431 431  
... ... @@ -450,7 +450,7 @@
450 450  )))
451 451  
452 452  * (((
453 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
454 454  )))
455 455  
456 456  For example, in the US915 band, the max payload for different DR is:
... ... @@ -463,7 +463,7 @@
463 463  
464 464  **d) DR3:** total payload includes 22 entries of data.
465 465  
466 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
467 467  
468 468  
469 469  **Downlink:**
... ... @@ -517,7 +517,7 @@
517 517  )))
518 518  
519 519  (((
520 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
425 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
521 521  )))
522 522  
523 523  
... ... @@ -546,7 +546,7 @@
546 546  
547 547  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
548 548  
549 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
550 550  
551 551  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
552 552  
... ... @@ -559,30 +559,27 @@
559 559  == 2.5 Datalog Feature ==
560 560  
561 561  
562 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
563 563  
564 564  
565 565  === 2.5.1 Ways to get datalog via LoRaWAN ===
566 566  
567 567  
568 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
569 569  
570 570  * (((
571 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
572 572  )))
573 573  * (((
574 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
575 575  )))
576 576  
577 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
578 578  
579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
580 580  
581 -
582 582  === 2.5.2 Unix TimeStamp ===
583 583  
584 584  
585 -LDS12-LB uses Unix TimeStamp format based on
487 +DS20L uses Unix TimeStamp format based on
586 586  
587 587  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
588 588  
... ... @@ -601,7 +601,7 @@
601 601  
602 602  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
603 603  
604 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
605 605  
606 606  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
607 607  
... ... @@ -629,7 +629,7 @@
629 629  )))
630 630  
631 631  (((
632 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
534 +Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
633 633  )))
634 634  
635 635  
... ... @@ -636,101 +636,17 @@
636 636  == 2.6 Frequency Plans ==
637 637  
638 638  
639 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
541 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
640 640  
641 641  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
642 642  
643 643  
644 -== 2.7 LiDAR ToF Measurement ==
546 +3. Configure DS20L
645 645  
646 -=== 2.7.1 Principle of Distance Measurement ===
647 -
648 -
649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
650 -
651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
652 -
653 -
654 -=== 2.7.2 Distance Measurement Characteristics ===
655 -
656 -
657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
658 -
659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
660 -
661 -
662 -(((
663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
664 -)))
665 -
666 -(((
667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
668 -)))
669 -
670 -(((
671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
672 -)))
673 -
674 -
675 -(((
676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
677 -)))
678 -
679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
680 -
681 -(((
682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
683 -)))
684 -
685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
686 -
687 -(((
688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
689 -)))
690 -
691 -
692 -=== 2.7.3 Notice of usage ===
693 -
694 -
695 -Possible invalid /wrong reading for LiDAR ToF tech:
696 -
697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
701 -
702 -=== 2.7.4  Reflectivity of different objects ===
703 -
704 -
705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
721 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
722 -Unpolished white metal surface
723 -)))|(% style="width:93px" %)130%
724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
727 -
728 -= 3. Configure LDS12-LB =
729 -
730 730  == 3.1 Configure Methods ==
731 731  
732 732  
733 -LDS12-LB supports below configure method:
551 +DS20L supports below configure method:
734 734  
735 735  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
736 736  
... ... @@ -752,10 +752,10 @@
752 752  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
753 753  
754 754  
755 -== 3.3 Commands special design for LDS12-LB ==
573 +== 3.3 Commands special design for DS20L ==
756 756  
757 757  
758 -These commands only valid for LDS12-LB, as below:
576 +These commands only valid for DS20L, as below:
759 759  
760 760  
761 761  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -841,39 +841,11 @@
841 841  
842 842  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
843 843  
844 -=== 3.3.3  Set Power Output Duration ===
845 845  
846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
847 -
848 -~1. first enable the power output to external sensor,
849 -
850 -2. keep it on as per duration, read sensor value and construct uplink payload
851 -
852 -3. final, close the power output.
853 -
854 -(% style="color:blue" %)**AT Command: AT+3V3T**
855 -
856 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
859 -OK
860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
863 -
864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
865 -Format: Command Code (0x07) followed by 3 bytes.
866 -
867 -The first byte is 01,the second and third bytes are the time to turn on.
868 -
869 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
870 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
871 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
872 -
873 873  = 4. Battery & Power Consumption =
874 874  
875 875  
876 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
666 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
877 877  
878 878  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
879 879  
... ... @@ -882,7 +882,7 @@
882 882  
883 883  
884 884  (% class="wikigeneratedid" %)
885 -User can change firmware LDS12-LB to:
675 +User can change firmware DS20L to:
886 886  
887 887  * Change Frequency band/ region.
888 888  
... ... @@ -890,7 +890,7 @@
890 890  
891 891  * Fix bugs.
892 892  
893 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
894 894  
895 895  Methods to Update Firmware:
896 896  
... ... @@ -938,7 +938,7 @@
938 938  = 8. Order Info =
939 939  
940 940  
941 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
942 942  
943 943  (% style="color:red" %)**XXX**(%%): **The default frequency band**
944 944  
... ... @@ -963,7 +963,7 @@
963 963  
964 964  (% style="color:#037691" %)**Package Includes**:
965 965  
966 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
967 967  
968 968  (% style="color:#037691" %)**Dimension and weight**:
969 969