Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -52,117 +52,22 @@ 52 52 == 1.3 Specification == 53 53 54 54 55 -(% style="color:#037691" %)** CommonDCCharacteristics:**55 +(% style="color:#037691" %)**LiDAR Sensor:** 56 56 57 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 58 -* Operating Temperature: -40 ~~ 85°C 59 - 60 -(% style="color:#037691" %)**Probe Specification:** 61 - 57 +* Operation Temperature: -40 ~~ 80 °C 58 +* Operation Humidity: 0~~99.9%RH (no Dew) 59 +* Storage Temperature: -10 ~~ 45°C 62 62 * Measure Range: 3cm~~200cm @ 90% reflectivity 63 63 * Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 64 64 * ToF FoV: ±9°, Total 18° 65 65 * Light source: VCSEL 66 66 67 -(% style="color:#037691" %)**LoRa Spec:** 68 68 69 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 70 -* Max +22 dBm constant RF output vs. 71 -* RX sensitivity: down to -139 dBm. 72 -* Excellent blocking immunity 73 - 74 -(% style="color:#037691" %)**Battery:** 75 - 76 -* Li/SOCI2 un-chargeable battery 77 -* Capacity: 8500mAh 78 -* Self-Discharge: <1% / Year @ 25°C 79 -* Max continuously current: 130mA 80 -* Max boost current: 2A, 1 second 81 - 82 -(% style="color:#037691" %)**Power Consumption** 83 - 84 -* Sleep Mode: 5uA @ 3.3v 85 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 86 - 87 -== 1.4 Applications == 88 - 89 - 90 -* Horizontal distance measurement 91 -* Parking management system 92 -* Object proximity and presence detection 93 -* Intelligent trash can management system 94 -* Robot obstacle avoidance 95 -* Automatic control 96 -* Sewer 97 - 98 98 (% style="display:none" %) 99 99 100 -== 1.5 Sleep mode and working mode == 101 101 69 += 2. Configure DS20L to connect to LoRaWAN network = 102 102 103 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 104 - 105 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 106 - 107 - 108 -== 1.6 Button & LEDs == 109 - 110 - 111 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 112 - 113 - 114 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 115 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 116 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 117 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 118 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 119 -))) 120 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 121 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 122 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 123 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 124 -))) 125 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 126 - 127 -== 1.7 BLE connection == 128 - 129 - 130 -LDS12-LB support BLE remote configure. 131 - 132 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 133 - 134 -* Press button to send an uplink 135 -* Press button to active device. 136 -* Device Power on or reset. 137 - 138 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 139 - 140 - 141 -== 1.8 Pin Definitions == 142 - 143 - 144 -[[image:image-20230805144259-1.png||height="413" width="741"]] 145 - 146 -== 1.9 Mechanical == 147 - 148 - 149 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 150 - 151 - 152 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 153 - 154 - 155 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 156 - 157 - 158 -(% style="color:blue" %)**Probe Mechanical:** 159 - 160 - 161 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 162 - 163 - 164 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 165 - 166 166 == 2.1 How it works == 167 167 168 168 ... ... @@ -574,11 +574,8 @@ 574 574 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 575 575 ))) 576 576 577 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 578 578 579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 580 580 581 - 582 582 === 2.5.2 Unix TimeStamp === 583 583 584 584 ... ... @@ -641,92 +641,8 @@ 641 641 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 642 642 643 643 644 - ==2.7 LiDARToF Measurement==546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB 645 645 646 -=== 2.7.1 Principle of Distance Measurement === 647 - 648 - 649 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 650 - 651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 652 - 653 - 654 -=== 2.7.2 Distance Measurement Characteristics === 655 - 656 - 657 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 658 - 659 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 660 - 661 - 662 -((( 663 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 664 -))) 665 - 666 -((( 667 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 668 -))) 669 - 670 -((( 671 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 672 -))) 673 - 674 - 675 -((( 676 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 677 -))) 678 - 679 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 680 - 681 -((( 682 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 683 -))) 684 - 685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 686 - 687 -((( 688 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 689 -))) 690 - 691 - 692 -=== 2.7.3 Notice of usage === 693 - 694 - 695 -Possible invalid /wrong reading for LiDAR ToF tech: 696 - 697 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 698 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 699 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 700 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 701 - 702 -=== 2.7.4 Reflectivity of different objects === 703 - 704 - 705 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 706 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 707 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 708 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 709 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 710 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 711 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 712 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 713 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 714 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 715 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 716 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 717 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 718 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 719 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 720 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 721 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 722 -Unpolished white metal surface 723 -)))|(% style="width:93px" %)130% 724 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 725 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 726 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 727 - 728 -= 3. Configure LDS12-LB = 729 - 730 730 == 3.1 Configure Methods == 731 731 732 732 ... ... @@ -841,35 +841,7 @@ 841 841 842 842 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 843 843 844 -=== 3.3.3 Set Power Output Duration === 845 845 846 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 847 - 848 -~1. first enable the power output to external sensor, 849 - 850 -2. keep it on as per duration, read sensor value and construct uplink payload 851 - 852 -3. final, close the power output. 853 - 854 -(% style="color:blue" %)**AT Command: AT+3V3T** 855 - 856 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 857 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 858 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 859 -OK 860 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 861 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 862 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 863 - 864 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 865 -Format: Command Code (0x07) followed by 3 bytes. 866 - 867 -The first byte is 01,the second and third bytes are the time to turn on. 868 - 869 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 870 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 871 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 872 - 873 873 = 4. Battery & Power Consumption = 874 874 875 875 ... ... @@ -938,7 +938,7 @@ 938 938 = 8. Order Info = 939 939 940 940 941 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**731 +Part Number: (% style="color:blue" %)**DS20L-XXX** 942 942 943 943 (% style="color:red" %)**XXX**(%%): **The default frequency band** 944 944 ... ... @@ -963,7 +963,7 @@ 963 963 964 964 (% style="color:#037691" %)**Package Includes**: 965 965 966 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1756 +* DS20L LoRaWAN Smart Distance Detector x 1 967 967 968 968 (% style="color:#037691" %)**Dimension and weight**: 969 969