Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version
To version 91.1
edited by Saxer Lin
on 2023/08/05 10:39
Change comment: Uploaded new attachment "image-20230805103904-1.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230614153353-1.png]]
3 3  
4 4  
5 5  
... ... @@ -7,7 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,23 +19,26 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN Smart Distance Detector ==
21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23 23  
24 24  
25 -The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26 26  
27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
29 29  
30 -DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  
34 -DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
32 +LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
35 35  
36 -[[image:image-20231110091506-4.png||height="391" width="768"]]
34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 37  
36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
38 +[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +
40 +
39 39  == 1.2 ​Features ==
40 40  
41 41  
... ... @@ -43,8 +43,8 @@
43 43  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 44  * Ultra-low power consumption
45 45  * Laser technology for distance detection
46 -* Measure Distance: 0.1m~~12m
47 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 +* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
48 48  * Monitor Battery Level
49 49  * Support Bluetooth v5.1 and LoRaWAN remote configure
50 50  * Support wireless OTA update firmware
... ... @@ -52,6 +52,8 @@
52 52  * Downlink to change configure
53 53  * 8500mAh Battery for long term use
54 54  
57 +
58 +
55 55  == 1.3 Specification ==
56 56  
57 57  
... ... @@ -67,8 +67,8 @@
67 67  * Measure Distance:
68 68  ** 0.1m ~~ 12m @ 90% Reflectivity
69 69  ** 0.1m ~~ 4m @ 10% Reflectivity
70 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 -* Distance resolution : 1cm
74 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 +* Distance resolution : 5mm
72 72  * Ambient light immunity : 70klux
73 73  * Enclosure rating : IP65
74 74  * Light source : LED
... ... @@ -97,6 +97,8 @@
97 97  * Sleep Mode: 5uA @ 3.3v
98 98  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99 99  
104 +
105 +
100 100  == 1.4 Applications ==
101 101  
102 102  
... ... @@ -108,6 +108,8 @@
108 108  * Automatic control
109 109  * Sewer
110 110  
117 +
118 +
111 111  (% style="display:none" %)
112 112  
113 113  == 1.5 Sleep mode and working mode ==
... ... @@ -137,6 +137,8 @@
137 137  )))
138 138  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139 139  
148 +
149 +
140 140  == 1.7 BLE connection ==
141 141  
142 142  
... ... @@ -153,8 +153,8 @@
153 153  
154 154  == 1.8 Pin Definitions ==
155 155  
166 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
156 156  
157 -[[image:image-20230805144259-1.png||height="413" width="741"]]
158 158  
159 159  == 1.9 Mechanical ==
160 160  
... ... @@ -190,7 +190,7 @@
190 190  
191 191  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
192 192  
193 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
203 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
194 194  
195 195  
196 196  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -251,8 +251,6 @@
251 251  
252 252  Example parse in TTNv3
253 253  
254 -[[image:image-20230805103904-1.png||height="131" width="711"]]
255 -
256 256  (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
257 257  
258 258  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
... ... @@ -308,11 +308,11 @@
308 308  
309 309  
310 310  (((
311 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
319 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
320 +)))
312 312  
313 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
314 -
315 -Uplink Payload totals 11 bytes.
322 +(((
323 +Uplink payload includes in total 11 bytes.
316 316  )))
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -327,7 +327,7 @@
327 327  [[Message Type>>||anchor="HMessageType"]]
328 328  )))
329 329  
330 -[[image:image-20230805104104-2.png||height="136" width="754"]]
338 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
331 331  
332 332  
333 333  ==== (% style="color:blue" %)**Battery Info**(%%) ====
... ... @@ -377,33 +377,18 @@
377 377  Customers can judge whether they need to adjust the environment based on the signal strength.
378 378  
379 379  
380 -**1) When the sensor detects valid data:**
381 -
382 -[[image:image-20230805155335-1.png||height="145" width="724"]]
383 -
384 -
385 -**2) When the sensor detects invalid data:**
386 -
387 -[[image:image-20230805155428-2.png||height="139" width="726"]]
388 -
389 -
390 -**3) When the sensor is not connected:**
391 -
392 -[[image:image-20230805155515-3.png||height="143" width="725"]]
393 -
394 -
395 395  ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
396 396  
397 397  
398 398  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
399 399  
400 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
393 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
401 401  
402 402  **Example:**
403 403  
404 -If byte[0]&0x01=0x00 : Normal uplink packet.
397 +0x00: Normal uplink packet.
405 405  
406 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
399 +0x01: Interrupt Uplink Packet.
407 407  
408 408  
409 409  ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
... ... @@ -429,97 +429,14 @@
429 429  
430 430  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
431 431  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
432 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
433 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
425 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
426 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
434 434  
435 -[[image:image-20230805150315-4.png||height="233" width="723"]]
436 436  
437 437  
438 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
430 +=== 2.3.3 Decode payload in The Things Network ===
439 439  
440 440  
441 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
442 -
443 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
444 -
445 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
446 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
447 -**Size(bytes)**
448 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
449 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
450 -Reserve(0xFF)
451 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
452 -LiDAR temp
453 -)))|(% style="width:85px" %)Unix TimeStamp
454 -
455 -**Interrupt flag & Interrupt level:**
456 -
457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
458 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
459 -**Size(bit)**
460 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
461 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
462 -Interrupt flag
463 -)))
464 -
465 -* (((
466 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
467 -)))
468 -
469 -For example, in the US915 band, the max payload for different DR is:
470 -
471 -**a) DR0:** max is 11 bytes so one entry of data
472 -
473 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
474 -
475 -**c) DR2:** total payload includes 11 entries of data
476 -
477 -**d) DR3:** total payload includes 22 entries of data.
478 -
479 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
480 -
481 -
482 -**Downlink:**
483 -
484 -0x31 64 CC 68 0C 64 CC 69 74 05
485 -
486 -[[image:image-20230805144936-2.png||height="113" width="746"]]
487 -
488 -**Uplink:**
489 -
490 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
491 -
492 -
493 -**Parsed Value:**
494 -
495 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
496 -
497 -
498 -[360,176,30,High,True,2023-08-04 02:53:00],
499 -
500 -[355,168,30,Low,False,2023-08-04 02:53:29],
501 -
502 -[245,211,30,Low,False,2023-08-04 02:54:29],
503 -
504 -[57,700,30,Low,False,2023-08-04 02:55:29],
505 -
506 -[361,164,30,Low,True,2023-08-04 02:56:00],
507 -
508 -[337,184,30,Low,False,2023-08-04 02:56:40],
509 -
510 -[20,4458,30,Low,False,2023-08-04 02:57:40],
511 -
512 -[362,173,30,Low,False,2023-08-04 02:58:53],
513 -
514 -
515 -**History read from serial port:**
516 -
517 -[[image:image-20230805145056-3.png]]
518 -
519 -
520 -=== 2.3.4 Decode payload in The Things Network ===
521 -
522 -
523 523  While using TTN network, you can add the payload format to decode the payload.
524 524  
525 525  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -534,9 +534,15 @@
534 534  )))
535 535  
536 536  
537 -== 2.4 ​Show Data in DataCake IoT Server ==
447 +== 2.4 Uplink Interval ==
538 538  
539 539  
450 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
451 +
452 +
453 +== 2.5 ​Show Data in DataCake IoT Server ==
454 +
455 +
540 540  (((
541 541  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
542 542  )))
... ... @@ -569,13 +569,13 @@
569 569  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
570 570  
571 571  
572 -== 2.5 Datalog Feature ==
488 +== 2.6 Datalog Feature ==
573 573  
574 574  
575 575  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
576 576  
577 577  
578 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
494 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
579 579  
580 580  
581 581  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -592,7 +592,7 @@
592 592  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593 593  
594 594  
595 -=== 2.5.2 Unix TimeStamp ===
511 +=== 2.6.2 Unix TimeStamp ===
596 596  
597 597  
598 598  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -609,7 +609,7 @@
609 609  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
610 610  
611 611  
612 -=== 2.5.3 Set Device Time ===
528 +=== 2.6.3 Set Device Time ===
613 613  
614 614  
615 615  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -619,7 +619,7 @@
619 619  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
620 620  
621 621  
622 -=== 2.5.4 Poll sensor value ===
538 +=== 2.6.4 Poll sensor value ===
623 623  
624 624  
625 625  Users can poll sensor values based on timestamps. Below is the downlink command.
... ... @@ -646,7 +646,7 @@
646 646  )))
647 647  
648 648  
649 -== 2.6 Frequency Plans ==
565 +== 2.7 Frequency Plans ==
650 650  
651 651  
652 652  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -654,9 +654,9 @@
654 654  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
655 655  
656 656  
657 -== 2.7 LiDAR ToF Measurement ==
573 +== 2.8 LiDAR ToF Measurement ==
658 658  
659 -=== 2.7.1 Principle of Distance Measurement ===
575 +=== 2.8.1 Principle of Distance Measurement ===
660 660  
661 661  
662 662  The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
... ... @@ -664,7 +664,7 @@
664 664  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665 665  
666 666  
667 -=== 2.7.2 Distance Measurement Characteristics ===
583 +=== 2.8.2 Distance Measurement Characteristics ===
668 668  
669 669  
670 670  With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
... ... @@ -702,7 +702,7 @@
702 702  )))
703 703  
704 704  
705 -=== 2.7.3 Notice of usage ===
621 +=== 2.8.3 Notice of usage ===
706 706  
707 707  
708 708  Possible invalid /wrong reading for LiDAR ToF tech:
... ... @@ -712,9 +712,11 @@
712 712  * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 713  * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 714  
715 -=== 2.7.4  Reflectivity of different objects ===
716 716  
717 717  
633 +=== 2.8.4  Reflectivity of different objects ===
634 +
635 +
718 718  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 719  |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 720  |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
... ... @@ -738,6 +738,8 @@
738 738  |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 739  |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 740  
659 +
660 +
741 741  = 3. Configure LDS12-LB =
742 742  
743 743  == 3.1 Configure Methods ==
... ... @@ -751,6 +751,8 @@
751 751  
752 752  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
753 753  
674 +
675 +
754 754  == 3.2 General Commands ==
755 755  
756 756  
... ... @@ -819,9 +819,9 @@
819 819  === 3.3.2 Set Interrupt Mode ===
820 820  
821 821  
822 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
744 +Feature, Set Interrupt mode for PA8 of pin.
823 823  
824 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
746 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
825 825  
826 826  (% style="color:blue" %)**AT Command: AT+INTMOD**
827 827  
... ... @@ -832,11 +832,7 @@
832 832  OK
833 833  the mode is 0 =Disable Interrupt
834 834  )))
835 -|(% style="width:154px" %)(((
836 -AT+INTMOD=2
837 -
838 -(default)
839 -)))|(% style="width:196px" %)(((
757 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
840 840  Set Transmit Interval
841 841  0. (Disable Interrupt),
842 842  ~1. (Trigger by rising and falling edge)
... ... @@ -854,9 +854,11 @@
854 854  
855 855  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
856 856  
775 +
776 +
857 857  === 3.3.3  Set Power Output Duration ===
858 858  
859 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
779 +Control the output duration 3V3 . Before each sampling, device will
860 860  
861 861  ~1. first enable the power output to external sensor,
862 862  
... ... @@ -872,7 +872,6 @@
872 872  OK
873 873  |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 874  |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 876  
877 877  (% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 878  Format: Command Code (0x07) followed by 3 bytes.
... ... @@ -881,8 +881,9 @@
881 881  
882 882  * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 883  * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885 885  
804 +
805 +
886 886  = 4. Battery & Power Consumption =
887 887  
888 888  
... ... @@ -911,6 +911,8 @@
911 911  
912 912  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
913 913  
834 +
835 +
914 914  = 6. FAQ =
915 915  
916 916  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -971,6 +971,8 @@
971 971  
972 972  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
973 973  
896 +
897 +
974 974  = 9. ​Packing Info =
975 975  
976 976  
... ... @@ -988,6 +988,8 @@
988 988  
989 989  * Weight / pcs : g
990 990  
915 +
916 +
991 991  = 10. Support =
992 992  
993 993  
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content