Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 13 removed)
- image-20230805103904-1.png
- image-20230805104104-2.png
- image-20230805144259-1.png
- image-20230805144936-2.png
- image-20230805145056-3.png
- image-20230805150315-4.png
- image-20230805155335-1.png
- image-20230805155428-2.png
- image-20230805155515-3.png
- image-20231110085300-1.png
- image-20231110085342-2.png
- image-20231110091447-3.png
- image-20231110091506-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS2 0L -- LoRaWANSmartDistanceDetector User Manual1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-202311 10085342-2.png||height="481" width="481"]]2 +[[image:image-20230614153353-1.png]] 3 3 4 4 5 5 ... ... @@ -7,7 +7,6 @@ 7 7 8 8 9 9 10 - 11 11 **Table of Contents:** 12 12 13 13 {{toc/}} ... ... @@ -19,23 +19,26 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is LoRaWAN SmartDistanceDetector ==21 +== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == 23 23 24 24 25 -The Dragino (% style="color:blue" %)** DS20L isasmartdistancedetector**(%%)baseonlong-rangewireless LoRaWANtechnology. Ituses(% style="color:blue"%)**LiDARsensor**(%%) to detectthe distancebetweenDS20Landobject,thenDS20Lwill send thedistancedatatotheIoTPlatformviaLoRaWAN.24 +The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 26 26 27 -DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 -consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 26 +The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 29 29 30 - DS20Lhasa (% style="color:blue"%)**built-in2400mAh non-chargeablebattery**(%%) for long-term useupto severalyears*. Userscan alsopower DS20L withanexternalpowersourcefor (%style="color:blue"%)**continuousmeasuringanddistancealarm/ countingpurposes.**28 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 - DS20L isfullycompatiblewith(%style="color:blue"%)**LoRaWANv1.0.3 ClassAprotocol**(%%),itcanworkwithastandardLoRaWAN gateway.30 +The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 34 -DS2 0Lsupports(% style="color:blue" %)**Datalogfeature**(%%).Itwill record thedatawhen thereis no network coverageand userscanretrieve the sensorvaluelatertoensure no miss forevery sensor reading.32 +LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use. 35 35 36 - [[image:image-20231110091506-4.png||height="391"width="768"]]34 +LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 37 36 +Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 38 38 38 +[[image:image-20230615152941-1.png||height="459" width="800"]] 39 + 40 + 39 39 == 1.2 Features == 40 40 41 41 ... ... @@ -43,8 +43,8 @@ 43 43 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 44 44 * Ultra-low power consumption 45 45 * Laser technology for distance detection 46 -* Measure Distance: 0.1m~~12m 47 -* Accuracy : ±5cm@(0.1- 5m), ±1%@(5m-12m)48 +* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 48 48 * Monitor Battery Level 49 49 * Support Bluetooth v5.1 and LoRaWAN remote configure 50 50 * Support wireless OTA update firmware ... ... @@ -67,8 +67,8 @@ 67 67 * Measure Distance: 68 68 ** 0.1m ~~ 12m @ 90% Reflectivity 69 69 ** 0.1m ~~ 4m @ 10% Reflectivity 70 -* Accuracy : ±5cm@(0.1- 5m), ±1%@(5m-12m)71 -* Distance resolution : 1cm72 +* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 73 +* Distance resolution : 5mm 72 72 * Ambient light immunity : 70klux 73 73 * Enclosure rating : IP65 74 74 * Light source : LED ... ... @@ -153,8 +153,8 @@ 153 153 154 154 == 1.8 Pin Definitions == 155 155 158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]] 156 156 157 -[[image:image-20230805144259-1.png||height="413" width="741"]] 158 158 159 159 == 1.9 Mechanical == 160 160 ... ... @@ -190,7 +190,7 @@ 190 190 191 191 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 192 192 193 -[[image:image-202311 10091447-3.png||height="383" width="752"]](% style="display:none" %)195 +[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %) 194 194 195 195 196 196 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -251,14 +251,12 @@ 251 251 252 252 Example parse in TTNv3 253 253 254 - [[image:image-20230805103904-1.png||height="131"width="711"]]256 +**Sensor Model**: For LDS12-LB, this value is 0x24 255 255 256 - (% style="color:blue"%)**Sensor Model**(%%):For LDS12-LB,this valueis0x24258 +**Firmware Version**: 0x0100, Means: v1.0.0 version 257 257 258 - (% style="color:blue" %)**FirmwareVersion**(%%):0x0100, Means:v1.0.0 version260 +**Frequency Band**: 259 259 260 -(% style="color:blue" %)**Frequency Band**: 261 - 262 262 0x01: EU868 263 263 264 264 0x02: US915 ... ... @@ -287,7 +287,7 @@ 287 287 288 288 0x0e: MA869 289 289 290 - (% style="color:blue" %)**Sub-Band**:290 +**Sub-Band**: 291 291 292 292 AU915 and US915:value 0x00 ~~ 0x08 293 293 ... ... @@ -295,7 +295,7 @@ 295 295 296 296 Other Bands: Always 0x00 297 297 298 - (% style="color:blue" %)**Battery Info**:298 +**Battery Info**: 299 299 300 300 Check the battery voltage. 301 301 ... ... @@ -308,11 +308,11 @@ 308 308 309 309 310 310 ((( 311 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 311 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 312 +))) 312 312 313 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 314 - 315 -Uplink Payload totals 11 bytes. 314 +((( 315 +Uplink payload includes in total 11 bytes. 316 316 ))) 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -327,7 +327,7 @@ 327 327 [[Message Type>>||anchor="HMessageType"]] 328 328 ))) 329 329 330 -[[image:i mage-20230805104104-2.png||height="136" width="754"]]330 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]] 331 331 332 332 333 333 ==== (% style="color:blue" %)**Battery Info**(%%) ==== ... ... @@ -377,33 +377,18 @@ 377 377 Customers can judge whether they need to adjust the environment based on the signal strength. 378 378 379 379 380 -**1) When the sensor detects valid data:** 381 - 382 -[[image:image-20230805155335-1.png||height="145" width="724"]] 383 - 384 - 385 -**2) When the sensor detects invalid data:** 386 - 387 -[[image:image-20230805155428-2.png||height="139" width="726"]] 388 - 389 - 390 -**3) When the sensor is not connected:** 391 - 392 -[[image:image-20230805155515-3.png||height="143" width="725"]] 393 - 394 - 395 395 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 396 396 397 397 398 398 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 399 399 400 -Note: The Internet Pin is a separate pin in the screw terminal. See of GPIO_EXTI.385 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]]. 401 401 402 402 **Example:** 403 403 404 - If byte[0]&0x01=0x00: Normal uplink packet.389 +0x00: Normal uplink packet. 405 405 406 - If byte[0]&0x01=0x01: Interrupt Uplink Packet.391 +0x01: Interrupt Uplink Packet. 407 407 408 408 409 409 ==== (% style="color:blue" %)**LiDAR temp**(%%) ==== ... ... @@ -429,97 +429,13 @@ 429 429 430 430 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 431 431 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 432 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 433 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 417 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 418 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]] 434 434 435 -[[image:image-20230805150315-4.png||height="233" width="723"]] 436 436 421 +=== 2.3.3 Decode payload in The Things Network === 437 437 438 -=== 2.3.3 Historical measuring distance, FPORT~=3 === 439 439 440 - 441 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 442 - 443 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 444 - 445 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 446 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 447 -**Size(bytes)** 448 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 449 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 450 -Reserve(0xFF) 451 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 452 -LiDAR temp 453 -)))|(% style="width:85px" %)Unix TimeStamp 454 - 455 -**Interrupt flag & Interrupt level:** 456 - 457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 458 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 459 -**Size(bit)** 460 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 461 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 462 -Interrupt flag 463 -))) 464 - 465 -* ((( 466 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 467 -))) 468 - 469 -For example, in the US915 band, the max payload for different DR is: 470 - 471 -**a) DR0:** max is 11 bytes so one entry of data 472 - 473 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 474 - 475 -**c) DR2:** total payload includes 11 entries of data 476 - 477 -**d) DR3:** total payload includes 22 entries of data. 478 - 479 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 480 - 481 - 482 -**Downlink:** 483 - 484 -0x31 64 CC 68 0C 64 CC 69 74 05 485 - 486 -[[image:image-20230805144936-2.png||height="113" width="746"]] 487 - 488 -**Uplink:** 489 - 490 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 491 - 492 - 493 -**Parsed Value:** 494 - 495 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 496 - 497 - 498 -[360,176,30,High,True,2023-08-04 02:53:00], 499 - 500 -[355,168,30,Low,False,2023-08-04 02:53:29], 501 - 502 -[245,211,30,Low,False,2023-08-04 02:54:29], 503 - 504 -[57,700,30,Low,False,2023-08-04 02:55:29], 505 - 506 -[361,164,30,Low,True,2023-08-04 02:56:00], 507 - 508 -[337,184,30,Low,False,2023-08-04 02:56:40], 509 - 510 -[20,4458,30,Low,False,2023-08-04 02:57:40], 511 - 512 -[362,173,30,Low,False,2023-08-04 02:58:53], 513 - 514 - 515 -**History read from serial port:** 516 - 517 -[[image:image-20230805145056-3.png]] 518 - 519 - 520 -=== 2.3.4 Decode payload in The Things Network === 521 - 522 - 523 523 While using TTN network, you can add the payload format to decode the payload. 524 524 525 525 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] ... ... @@ -534,9 +534,15 @@ 534 534 ))) 535 535 536 536 537 -== 2.4 Show DatainDataCakeIoT Server==438 +== 2.4 Uplink Interval == 538 538 539 539 441 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 442 + 443 + 444 +== 2.5 Show Data in DataCake IoT Server == 445 + 446 + 540 540 ((( 541 541 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 542 542 ))) ... ... @@ -569,13 +569,13 @@ 569 569 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 570 570 571 571 572 -== 2. 5Datalog Feature ==479 +== 2.6 Datalog Feature == 573 573 574 574 575 575 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 576 576 577 577 578 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===485 +=== 2.6.1 Ways to get datalog via LoRaWAN === 579 579 580 580 581 581 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. ... ... @@ -592,7 +592,7 @@ 592 592 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 593 593 594 594 595 -=== 2. 5.2 Unix TimeStamp ===502 +=== 2.6.2 Unix TimeStamp === 596 596 597 597 598 598 LDS12-LB uses Unix TimeStamp format based on ... ... @@ -609,7 +609,7 @@ 609 609 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 610 610 611 611 612 -=== 2. 5.3 Set Device Time ===519 +=== 2.6.3 Set Device Time === 613 613 614 614 615 615 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. ... ... @@ -619,7 +619,7 @@ 619 619 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 620 620 621 621 622 -=== 2. 5.4 Poll sensor value ===529 +=== 2.6.4 Poll sensor value === 623 623 624 624 625 625 Users can poll sensor values based on timestamps. Below is the downlink command. ... ... @@ -646,7 +646,7 @@ 646 646 ))) 647 647 648 648 649 -== 2. 6Frequency Plans ==556 +== 2.7 Frequency Plans == 650 650 651 651 652 652 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -654,9 +654,9 @@ 654 654 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 655 655 656 656 657 -== 2. 7LiDAR ToF Measurement ==564 +== 2.8 LiDAR ToF Measurement == 658 658 659 -=== 2. 7.1 Principle of Distance Measurement ===566 +=== 2.8.1 Principle of Distance Measurement === 660 660 661 661 662 662 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. ... ... @@ -664,7 +664,7 @@ 664 664 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 665 665 666 666 667 -=== 2. 7.2 Distance Measurement Characteristics ===574 +=== 2.8.2 Distance Measurement Characteristics === 668 668 669 669 670 670 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: ... ... @@ -702,7 +702,7 @@ 702 702 ))) 703 703 704 704 705 -=== 2. 7.3 Notice of usage ===612 +=== 2.8.3 Notice of usage === 706 706 707 707 708 708 Possible invalid /wrong reading for LiDAR ToF tech: ... ... @@ -712,7 +712,7 @@ 712 712 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 713 713 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 714 714 715 -=== 2. 7.4 Reflectivity of different objects ===622 +=== 2.8.4 Reflectivity of different objects === 716 716 717 717 718 718 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) ... ... @@ -819,9 +819,9 @@ 819 819 === 3.3.2 Set Interrupt Mode === 820 820 821 821 822 -Feature, Set Interrupt mode for pinofGPIO_EXTI.729 +Feature, Set Interrupt mode for PA8 of pin. 823 823 824 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.731 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 825 825 826 826 (% style="color:blue" %)**AT Command: AT+INTMOD** 827 827 ... ... @@ -832,11 +832,7 @@ 832 832 OK 833 833 the mode is 0 =Disable Interrupt 834 834 ))) 835 -|(% style="width:154px" %)((( 836 -AT+INTMOD=2 837 - 838 -(default) 839 -)))|(% style="width:196px" %)((( 742 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 840 840 Set Transmit Interval 841 841 0. (Disable Interrupt), 842 842 ~1. (Trigger by rising and falling edge) ... ... @@ -856,7 +856,7 @@ 856 856 857 857 === 3.3.3 Set Power Output Duration === 858 858 859 -Control the output duration 3V3 (pinof VBAT_OUT). Before each sampling, device will762 +Control the output duration 3V3 . Before each sampling, device will 860 860 861 861 ~1. first enable the power output to external sensor, 862 862 ... ... @@ -872,7 +872,6 @@ 872 872 OK 873 873 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 874 874 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 875 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 876 876 877 877 (% style="color:blue" %)**Downlink Command: 0x07**(%%) 878 878 Format: Command Code (0x07) followed by 3 bytes. ... ... @@ -881,7 +881,6 @@ 881 881 882 882 * Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 883 883 * Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 884 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 885 885 886 886 = 4. Battery & Power Consumption = 887 887
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.4 KB - Content