Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version
To version 113.6
edited by Xiaoling
on 2023/11/10 10:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -39,147 +39,39 @@
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN 1.0.3 Class A
43 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 -* Ultra-low power consumption
45 -* Laser technology for distance detection
46 -* Measure Distance: 0.1m~~12m
47 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 -* Monitor Battery Level
49 -* Support Bluetooth v5.1 and LoRaWAN remote configure
50 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
51 51  * AT Commands to change parameters
52 -* Downlink to change configure
53 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
54 54  
55 55  == 1.3 Specification ==
56 56  
57 57  
58 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
59 59  
60 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
62 62  
63 -(% style="color:#037691" %)**Probe Specification:**
64 64  
65 -* Storage temperature:-20℃~~75℃
66 -* Operating temperature : -20℃~~60℃
67 -* Measure Distance:
68 -** 0.1m ~~ 12m @ 90% Reflectivity
69 -** 0.1m ~~ 4m @ 10% Reflectivity
70 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 -* Distance resolution : 1cm
72 -* Ambient light immunity : 70klux
73 -* Enclosure rating : IP65
74 -* Light source : LED
75 -* Central wavelength : 850nm
76 -* FOV : 3.6°
77 -* Material of enclosure : ABS+PC
78 -* Wire length : 25cm
79 -
80 -(% style="color:#037691" %)**LoRa Spec:**
81 -
82 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 -* Max +22 dBm constant RF output vs.
84 -* RX sensitivity: down to -139 dBm.
85 -* Excellent blocking immunity
86 -
87 -(% style="color:#037691" %)**Battery:**
88 -
89 -* Li/SOCI2 un-chargeable battery
90 -* Capacity: 8500mAh
91 -* Self-Discharge: <1% / Year @ 25°C
92 -* Max continuously current: 130mA
93 -* Max boost current: 2A, 1 second
94 -
95 -(% style="color:#037691" %)**Power Consumption**
96 -
97 -* Sleep Mode: 5uA @ 3.3v
98 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99 -
100 -== 1.4 Applications ==
101 -
102 -
103 -* Horizontal distance measurement
104 -* Parking management system
105 -* Object proximity and presence detection
106 -* Intelligent trash can management system
107 -* Robot obstacle avoidance
108 -* Automatic control
109 -* Sewer
110 -
111 111  (% style="display:none" %)
112 112  
113 -== 1.5 Sleep mode and working mode ==
114 114  
69 += 2. Configure DS20L to connect to LoRaWAN network =
115 115  
116 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
117 -
118 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
119 -
120 -
121 -== 1.6 Button & LEDs ==
122 -
123 -
124 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
125 -
126 -
127 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 -)))
133 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 -)))
138 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139 -
140 -== 1.7 BLE connection ==
141 -
142 -
143 -LDS12-LB support BLE remote configure.
144 -
145 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146 -
147 -* Press button to send an uplink
148 -* Press button to active device.
149 -* Device Power on or reset.
150 -
151 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152 -
153 -
154 -== 1.8 Pin Definitions ==
155 -
156 -
157 -[[image:image-20230805144259-1.png||height="413" width="741"]]
158 -
159 -== 1.9 Mechanical ==
160 -
161 -
162 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 -
164 -
165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 -
167 -
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169 -
170 -
171 -(% style="color:blue" %)**Probe Mechanical:**
172 -
173 -
174 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175 -
176 -
177 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
178 -
179 179  == 2.1 How it works ==
180 180  
181 181  
182 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
183 183  
184 184  (% style="display:none" %) (%%)
185 185  
... ... @@ -193,9 +193,9 @@
193 193  [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
194 194  
195 195  
196 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
197 197  
198 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
90 +Each DS20L is shipped with a sticker with the default device EUI as below:
199 199  
200 200  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
201 201  
... ... @@ -224,10 +224,10 @@
224 224  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
225 225  
226 226  
227 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
228 228  
229 229  
230 -Press the button for 5 seconds to activate the LDS12-LB.
122 +Press the button for 5 seconds to activate the DS20L.
231 231  
232 232  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
233 233  
... ... @@ -239,7 +239,7 @@
239 239  === 2.3.1 Device Status, FPORT~=5 ===
240 240  
241 241  
242 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
243 243  
244 244  The Payload format is as below.
245 245  
... ... @@ -253,7 +253,7 @@
253 253  
254 254  [[image:image-20230805103904-1.png||height="131" width="711"]]
255 255  
256 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
257 257  
258 258  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
259 259  
... ... @@ -308,7 +308,7 @@
308 308  
309 309  
310 310  (((
311 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
312 312  
313 313  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
314 314  
... ... @@ -333,7 +333,7 @@
333 333  ==== (% style="color:blue" %)**Battery Info**(%%) ====
334 334  
335 335  
336 -Check the battery voltage for LDS12-LB.
228 +Check the battery voltage for DS20L.
337 337  
338 338  Ex1: 0x0B45 = 2885mV
339 339  
... ... @@ -438,7 +438,7 @@
438 438  === 2.3.3 Historical measuring distance, FPORT~=3 ===
439 439  
440 440  
441 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
442 442  
443 443  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
444 444  
... ... @@ -463,7 +463,7 @@
463 463  )))
464 464  
465 465  * (((
466 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
467 467  )))
468 468  
469 469  For example, in the US915 band, the max payload for different DR is:
... ... @@ -476,7 +476,7 @@
476 476  
477 477  **d) DR3:** total payload includes 22 entries of data.
478 478  
479 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
480 480  
481 481  
482 482  **Downlink:**
... ... @@ -530,7 +530,7 @@
530 530  )))
531 531  
532 532  (((
533 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
425 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
534 534  )))
535 535  
536 536  
... ... @@ -559,7 +559,7 @@
559 559  
560 560  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
561 561  
562 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
563 563  
564 564  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
565 565  
... ... @@ -572,30 +572,27 @@
572 572  == 2.5 Datalog Feature ==
573 573  
574 574  
575 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
576 576  
577 577  
578 578  === 2.5.1 Ways to get datalog via LoRaWAN ===
579 579  
580 580  
581 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
582 582  
583 583  * (((
584 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
585 585  )))
586 586  * (((
587 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
588 588  )))
589 589  
590 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
591 591  
592 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593 593  
594 -
595 595  === 2.5.2 Unix TimeStamp ===
596 596  
597 597  
598 -LDS12-LB uses Unix TimeStamp format based on
487 +DS20L uses Unix TimeStamp format based on
599 599  
600 600  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
601 601  
... ... @@ -614,7 +614,7 @@
614 614  
615 615  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
616 616  
617 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
618 618  
619 619  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
620 620  
... ... @@ -654,92 +654,8 @@
654 654  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
655 655  
656 656  
657 -== 2.7 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
658 658  
659 -=== 2.7.1 Principle of Distance Measurement ===
660 -
661 -
662 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
663 -
664 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665 -
666 -
667 -=== 2.7.2 Distance Measurement Characteristics ===
668 -
669 -
670 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
671 -
672 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
673 -
674 -
675 -(((
676 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 -)))
678 -
679 -(((
680 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 -)))
682 -
683 -(((
684 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 -)))
686 -
687 -
688 -(((
689 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 -)))
691 -
692 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693 -
694 -(((
695 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 -)))
697 -
698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699 -
700 -(((
701 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 -)))
703 -
704 -
705 -=== 2.7.3 Notice of usage ===
706 -
707 -
708 -Possible invalid /wrong reading for LiDAR ToF tech:
709 -
710 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 -
715 -=== 2.7.4  Reflectivity of different objects ===
716 -
717 -
718 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
735 -Unpolished white metal surface
736 -)))|(% style="width:93px" %)130%
737 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 -
741 -= 3. Configure LDS12-LB =
742 -
743 743  == 3.1 Configure Methods ==
744 744  
745 745  
... ... @@ -854,35 +854,7 @@
854 854  
855 855  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
856 856  
857 -=== 3.3.3  Set Power Output Duration ===
858 858  
859 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
860 -
861 -~1. first enable the power output to external sensor,
862 -
863 -2. keep it on as per duration, read sensor value and construct uplink payload
864 -
865 -3. final, close the power output.
866 -
867 -(% style="color:blue" %)**AT Command: AT+3V3T**
868 -
869 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
870 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
872 -OK
873 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 -
877 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 -Format: Command Code (0x07) followed by 3 bytes.
879 -
880 -The first byte is 01,the second and third bytes are the time to turn on.
881 -
882 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885 -
886 886  = 4. Battery & Power Consumption =
887 887  
888 888  
... ... @@ -903,7 +903,7 @@
903 903  
904 904  * Fix bugs.
905 905  
906 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
907 907  
908 908  Methods to Update Firmware:
909 909  
... ... @@ -951,7 +951,7 @@
951 951  = 8. Order Info =
952 952  
953 953  
954 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
955 955  
956 956  (% style="color:red" %)**XXX**(%%): **The default frequency band**
957 957  
... ... @@ -976,7 +976,7 @@
976 976  
977 977  (% style="color:#037691" %)**Package Includes**:
978 978  
979 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
980 980  
981 981  (% style="color:#037691" %)**Dimension and weight**:
982 982