Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -39,147 +39,39 @@ 39 39 == 1.2 Features == 40 40 41 41 42 -* LoRaWAN 1.0.3 Class A 43 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 44 -* Ultra-low power consumption 45 -* Laser technology for distance detection 46 -* Measure Distance: 0.1m~~12m 47 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 48 -* Monitor Battery Level 49 -* Support Bluetooth v5.1 and LoRaWAN remote configure 50 -* Support wireless OTA update firmware 42 +* LoRaWAN Class A protocol 43 +* LiDAR distance detector, range 3 ~~ 200cm 44 +* Periodically detect or continuously detect mode 51 51 * AT Commands to change parameters 52 -* Downlink to change configure 53 -* 8500mAh Battery for long term use 46 +* Remotely configure parameters via LoRaWAN Downlink 47 +* Alarm & Counting mode 48 +* Datalog Feature 49 +* Firmware upgradable via program port or LoRa protocol 50 +* Built-in 2400mAh battery or power by external power source 54 54 55 55 == 1.3 Specification == 56 56 57 57 58 -(% style="color:#037691" %)** CommonDCCharacteristics:**55 +(% style="color:#037691" %)**LiDAR Sensor:** 59 59 60 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 61 -* Operating Temperature: -40 ~~ 85°C 57 +* Operation Temperature: -40 ~~ 80 °C 58 +* Operation Humidity: 0~~99.9%RH (no Dew) 59 +* Storage Temperature: -10 ~~ 45°C 60 +* Measure Range: 3cm~~200cm @ 90% reflectivity 61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 +* ToF FoV: ±9°, Total 18° 63 +* Light source: VCSEL 62 62 63 -(% style="color:#037691" %)**Probe Specification:** 64 64 65 -* Storage temperature:-20℃~~75℃ 66 -* Operating temperature : -20℃~~60℃ 67 -* Measure Distance: 68 -** 0.1m ~~ 12m @ 90% Reflectivity 69 -** 0.1m ~~ 4m @ 10% Reflectivity 70 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 71 -* Distance resolution : 1cm 72 -* Ambient light immunity : 70klux 73 -* Enclosure rating : IP65 74 -* Light source : LED 75 -* Central wavelength : 850nm 76 -* FOV : 3.6° 77 -* Material of enclosure : ABS+PC 78 -* Wire length : 25cm 79 - 80 -(% style="color:#037691" %)**LoRa Spec:** 81 - 82 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 83 -* Max +22 dBm constant RF output vs. 84 -* RX sensitivity: down to -139 dBm. 85 -* Excellent blocking immunity 86 - 87 -(% style="color:#037691" %)**Battery:** 88 - 89 -* Li/SOCI2 un-chargeable battery 90 -* Capacity: 8500mAh 91 -* Self-Discharge: <1% / Year @ 25°C 92 -* Max continuously current: 130mA 93 -* Max boost current: 2A, 1 second 94 - 95 -(% style="color:#037691" %)**Power Consumption** 96 - 97 -* Sleep Mode: 5uA @ 3.3v 98 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 99 - 100 -== 1.4 Applications == 101 - 102 - 103 -* Horizontal distance measurement 104 -* Parking management system 105 -* Object proximity and presence detection 106 -* Intelligent trash can management system 107 -* Robot obstacle avoidance 108 -* Automatic control 109 -* Sewer 110 - 111 111 (% style="display:none" %) 112 112 113 -== 1.5 Sleep mode and working mode == 114 114 69 += 2. Configure DS20L to connect to LoRaWAN network = 115 115 116 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 117 - 118 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 119 - 120 - 121 -== 1.6 Button & LEDs == 122 - 123 - 124 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 125 - 126 - 127 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 128 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 129 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 130 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 131 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 132 -))) 133 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 134 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 135 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 136 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 137 -))) 138 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 139 - 140 -== 1.7 BLE connection == 141 - 142 - 143 -LDS12-LB support BLE remote configure. 144 - 145 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 146 - 147 -* Press button to send an uplink 148 -* Press button to active device. 149 -* Device Power on or reset. 150 - 151 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 152 - 153 - 154 -== 1.8 Pin Definitions == 155 - 156 - 157 -[[image:image-20230805144259-1.png||height="413" width="741"]] 158 - 159 -== 1.9 Mechanical == 160 - 161 - 162 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 163 - 164 - 165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 166 - 167 - 168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 169 - 170 - 171 -(% style="color:blue" %)**Probe Mechanical:** 172 - 173 - 174 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 175 - 176 - 177 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 178 - 179 179 == 2.1 How it works == 180 180 181 181 182 -The LDS12-LBis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 183 183 184 184 (% style="display:none" %) (%%) 185 185 ... ... @@ -193,9 +193,9 @@ 193 193 [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 194 194 195 195 196 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 197 197 198 -Each LDS12-LBis shipped with a sticker with the default device EUI as below:90 +Each DS20L is shipped with a sticker with the default device EUI as below: 199 199 200 200 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 201 201 ... ... @@ -224,10 +224,10 @@ 224 224 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 225 225 226 226 227 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L 228 228 229 229 230 -Press the button for 5 seconds to activate the LDS12-LB.122 +Press the button for 5 seconds to activate the DS20L. 231 231 232 232 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 233 233 ... ... @@ -239,7 +239,7 @@ 239 239 === 2.3.1 Device Status, FPORT~=5 === 240 240 241 241 242 -Users can use the downlink command(**0x26 01**) to ask LDS12-LBto send device configure detail, include device configure status.LDS12-LBwill uplink a payload via FPort=5 to server.134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server. 243 243 244 244 The Payload format is as below. 245 245 ... ... @@ -253,7 +253,7 @@ 253 253 254 254 [[image:image-20230805103904-1.png||height="131" width="711"]] 255 255 256 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24 257 257 258 258 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 259 259 ... ... @@ -308,7 +308,7 @@ 308 308 309 309 310 310 ((( 311 - LDS12-LBwill send this uplink **after** Device Status once join the LoRaWAN network successfully. AndLDS12-LBwill:203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 312 312 313 313 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 314 314 ... ... @@ -333,7 +333,7 @@ 333 333 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 334 334 335 335 336 -Check the battery voltage for LDS12-LB.228 +Check the battery voltage for DS20L. 337 337 338 338 Ex1: 0x0B45 = 2885mV 339 339 ... ... @@ -438,7 +438,7 @@ 438 438 === 2.3.3 Historical measuring distance, FPORT~=3 === 439 439 440 440 441 - LDS12-LBstores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 442 442 443 443 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 444 444 ... ... @@ -463,7 +463,7 @@ 463 463 ))) 464 464 465 465 * ((( 466 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LBwill send max bytes according to the current DR and Frequency bands.358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 467 467 ))) 468 468 469 469 For example, in the US915 band, the max payload for different DR is: ... ... @@ -476,7 +476,7 @@ 476 476 477 477 **d) DR3:** total payload includes 22 entries of data. 478 478 479 -If LDS12-LBdoesn't have any data in the polling time. It will uplink 11 bytes of 0371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 480 480 481 481 482 482 **Downlink:** ... ... @@ -530,7 +530,7 @@ 530 530 ))) 531 531 532 532 ((( 533 - LDS12-LBTTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]425 +DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 534 534 ))) 535 535 536 536 ... ... @@ -559,7 +559,7 @@ 559 559 560 560 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 561 561 562 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LBand add DevEUI.**454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 563 563 564 564 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 565 565 ... ... @@ -572,30 +572,27 @@ 572 572 == 2.5 Datalog Feature == 573 573 574 574 575 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LBwill store the reading for future retrieving purposes.467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes. 576 576 577 577 578 578 === 2.5.1 Ways to get datalog via LoRaWAN === 579 579 580 580 581 -Set PNACKMD=1, LDS12-LBwill wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LBwill mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 582 582 583 583 * ((( 584 -a) LDS12-LBwill do an ACK check for data records sending to make sure every data arrive server.476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server. 585 585 ))) 586 586 * ((( 587 -b) LDS12-LBwill send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LBwon't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LBgets a ACK,LDS12-LBwill consider there is a network connection and resend all NONE-ACK messages.479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages. 588 588 ))) 589 589 590 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 591 591 592 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 593 593 594 - 595 595 === 2.5.2 Unix TimeStamp === 596 596 597 597 598 - LDS12-LBuses Unix TimeStamp format based on487 +DS20L uses Unix TimeStamp format based on 599 599 600 600 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 601 601 ... ... @@ -614,7 +614,7 @@ 614 614 615 615 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 616 616 617 -Once LDS12-LBJoined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LBfails to get the time from the server,LDS12-LBwill use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 618 618 619 619 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 620 620 ... ... @@ -654,92 +654,8 @@ 654 654 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 655 655 656 656 657 - ==2.7 LiDARToF Measurement==546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB 658 658 659 -=== 2.7.1 Principle of Distance Measurement === 660 - 661 - 662 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 663 - 664 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 665 - 666 - 667 -=== 2.7.2 Distance Measurement Characteristics === 668 - 669 - 670 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 671 - 672 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 673 - 674 - 675 -((( 676 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 677 -))) 678 - 679 -((( 680 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 681 -))) 682 - 683 -((( 684 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 685 -))) 686 - 687 - 688 -((( 689 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 690 -))) 691 - 692 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 693 - 694 -((( 695 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 696 -))) 697 - 698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 699 - 700 -((( 701 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 702 -))) 703 - 704 - 705 -=== 2.7.3 Notice of usage === 706 - 707 - 708 -Possible invalid /wrong reading for LiDAR ToF tech: 709 - 710 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 711 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 712 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 713 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 714 - 715 -=== 2.7.4 Reflectivity of different objects === 716 - 717 - 718 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 719 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 720 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 721 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 722 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 723 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 724 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 725 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 726 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 727 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 728 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 729 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 730 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 731 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 732 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 733 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 734 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 735 -Unpolished white metal surface 736 -)))|(% style="width:93px" %)130% 737 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 738 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 739 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 740 - 741 -= 3. Configure LDS12-LB = 742 - 743 743 == 3.1 Configure Methods == 744 744 745 745 ... ... @@ -854,35 +854,7 @@ 854 854 855 855 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 856 856 857 -=== 3.3.3 Set Power Output Duration === 858 858 859 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 860 - 861 -~1. first enable the power output to external sensor, 862 - 863 -2. keep it on as per duration, read sensor value and construct uplink payload 864 - 865 -3. final, close the power output. 866 - 867 -(% style="color:blue" %)**AT Command: AT+3V3T** 868 - 869 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 870 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 871 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 872 -OK 873 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 874 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 875 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 876 - 877 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 878 -Format: Command Code (0x07) followed by 3 bytes. 879 - 880 -The first byte is 01,the second and third bytes are the time to turn on. 881 - 882 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 883 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 884 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 885 - 886 886 = 4. Battery & Power Consumption = 887 887 888 888 ... ... @@ -903,7 +903,7 @@ 903 903 904 904 * Fix bugs. 905 905 906 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]** 907 907 908 908 Methods to Update Firmware: 909 909 ... ... @@ -951,7 +951,7 @@ 951 951 = 8. Order Info = 952 952 953 953 954 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**731 +Part Number: (% style="color:blue" %)**DS20L-XXX** 955 955 956 956 (% style="color:red" %)**XXX**(%%): **The default frequency band** 957 957 ... ... @@ -976,7 +976,7 @@ 976 976 977 977 (% style="color:#037691" %)**Package Includes**: 978 978 979 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1756 +* DS20L LoRaWAN Smart Distance Detector x 1 980 980 981 981 (% style="color:#037691" %)**Dimension and weight**: 982 982