Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.3
edited by Xiaoling
on 2023/11/10 09:28
Change comment: There is no comment for this version
To version 113.5
edited by Xiaoling
on 2023/11/10 09:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -39,143 +39,35 @@
39 39  == 1.2 ​Features ==
40 40  
41 41  
42 -* LoRaWAN 1.0.3 Class A
43 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 -* Ultra-low power consumption
45 -* Laser technology for distance detection
46 -* Measure Distance: 0.1m~~12m
47 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 -* Monitor Battery Level
49 -* Support Bluetooth v5.1 and LoRaWAN remote configure
50 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
51 51  * AT Commands to change parameters
52 -* Downlink to change configure
53 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
54 54  
55 55  == 1.3 Specification ==
56 56  
57 57  
58 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
59 59  
60 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
62 62  
63 -(% style="color:#037691" %)**Probe Specification:**
64 64  
65 -* Storage temperature:-20℃~~75℃
66 -* Operating temperature : -20℃~~60℃
67 -* Measure Distance:
68 -** 0.1m ~~ 12m @ 90% Reflectivity
69 -** 0.1m ~~ 4m @ 10% Reflectivity
70 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 -* Distance resolution : 1cm
72 -* Ambient light immunity : 70klux
73 -* Enclosure rating : IP65
74 -* Light source : LED
75 -* Central wavelength : 850nm
76 -* FOV : 3.6°
77 -* Material of enclosure : ABS+PC
78 -* Wire length : 25cm
79 -
80 -(% style="color:#037691" %)**LoRa Spec:**
81 -
82 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 -* Max +22 dBm constant RF output vs.
84 -* RX sensitivity: down to -139 dBm.
85 -* Excellent blocking immunity
86 -
87 -(% style="color:#037691" %)**Battery:**
88 -
89 -* Li/SOCI2 un-chargeable battery
90 -* Capacity: 8500mAh
91 -* Self-Discharge: <1% / Year @ 25°C
92 -* Max continuously current: 130mA
93 -* Max boost current: 2A, 1 second
94 -
95 -(% style="color:#037691" %)**Power Consumption**
96 -
97 -* Sleep Mode: 5uA @ 3.3v
98 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99 -
100 -== 1.4 Applications ==
101 -
102 -
103 -* Horizontal distance measurement
104 -* Parking management system
105 -* Object proximity and presence detection
106 -* Intelligent trash can management system
107 -* Robot obstacle avoidance
108 -* Automatic control
109 -* Sewer
110 -
111 111  (% style="display:none" %)
112 112  
113 -== 1.5 Sleep mode and working mode ==
114 114  
69 += 2. Configure DS20L to connect to LoRaWAN network =
115 115  
116 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
117 -
118 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
119 -
120 -
121 -== 1.6 Button & LEDs ==
122 -
123 -
124 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
125 -
126 -
127 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 -)))
133 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 -)))
138 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139 -
140 -== 1.7 BLE connection ==
141 -
142 -
143 -LDS12-LB support BLE remote configure.
144 -
145 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146 -
147 -* Press button to send an uplink
148 -* Press button to active device.
149 -* Device Power on or reset.
150 -
151 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152 -
153 -
154 -== 1.8 Pin Definitions ==
155 -
156 -
157 -[[image:image-20230805144259-1.png||height="413" width="741"]]
158 -
159 -== 1.9 Mechanical ==
160 -
161 -
162 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163 -
164 -
165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166 -
167 -
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169 -
170 -
171 -(% style="color:blue" %)**Probe Mechanical:**
172 -
173 -
174 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175 -
176 -
177 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
178 -
179 179  == 2.1 How it works ==
180 180  
181 181  
... ... @@ -587,11 +587,8 @@
587 587  b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
588 588  )))
589 589  
590 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
591 591  
592 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593 593  
594 -
595 595  === 2.5.2 Unix TimeStamp ===
596 596  
597 597  
... ... @@ -654,92 +654,8 @@
654 654  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
655 655  
656 656  
657 -== 2.7 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
658 658  
659 -=== 2.7.1 Principle of Distance Measurement ===
660 -
661 -
662 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
663 -
664 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665 -
666 -
667 -=== 2.7.2 Distance Measurement Characteristics ===
668 -
669 -
670 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
671 -
672 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
673 -
674 -
675 -(((
676 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 -)))
678 -
679 -(((
680 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 -)))
682 -
683 -(((
684 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 -)))
686 -
687 -
688 -(((
689 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 -)))
691 -
692 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693 -
694 -(((
695 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 -)))
697 -
698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699 -
700 -(((
701 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 -)))
703 -
704 -
705 -=== 2.7.3 Notice of usage ===
706 -
707 -
708 -Possible invalid /wrong reading for LiDAR ToF tech:
709 -
710 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714 -
715 -=== 2.7.4  Reflectivity of different objects ===
716 -
717 -
718 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
735 -Unpolished white metal surface
736 -)))|(% style="width:93px" %)130%
737 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740 -
741 -= 3. Configure LDS12-LB =
742 -
743 743  == 3.1 Configure Methods ==
744 744  
745 745  
... ... @@ -854,35 +854,7 @@
854 854  
855 855  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
856 856  
857 -=== 3.3.3  Set Power Output Duration ===
858 858  
859 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
860 -
861 -~1. first enable the power output to external sensor,
862 -
863 -2. keep it on as per duration, read sensor value and construct uplink payload
864 -
865 -3. final, close the power output.
866 -
867 -(% style="color:blue" %)**AT Command: AT+3V3T**
868 -
869 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
870 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
872 -OK
873 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 -
877 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 -Format: Command Code (0x07) followed by 3 bytes.
879 -
880 -The first byte is 01,the second and third bytes are the time to turn on.
881 -
882 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885 -
886 886  = 4. Battery & Power Consumption =
887 887  
888 888  
... ... @@ -951,7 +951,7 @@
951 951  = 8. Order Info =
952 952  
953 953  
954 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
955 955  
956 956  (% style="color:red" %)**XXX**(%%): **The default frequency band**
957 957  
... ... @@ -976,7 +976,7 @@
976 976  
977 977  (% style="color:#037691" %)**Package Includes**:
978 978  
979 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
980 980  
981 981  (% style="color:#037691" %)**Dimension and weight**:
982 982