Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.2
edited by Xiaoling
on 2023/11/10 09:15
Change comment: There is no comment for this version
To version 80.1
edited by Xiaoling
on 2023/06/14 15:33
Change comment: Uploaded new attachment "image-20230614153353-1.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
23 23  
24 24  
25 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
26 26  
27 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
28 28  
29 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
30 30  
31 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20231110091506-4.png||height="391" width="768"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,16 +45,19 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Laser technology for distance detection
49 -* Measure Distance: 0.1m~~12m
50 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
52 52  * Support Bluetooth v5.1 and LoRaWAN remote configure
53 53  * Support wireless OTA update firmware
54 54  * AT Commands to change parameters
55 55  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
56 56  * 8500mAh Battery for long term use
57 57  
60 +
58 58  == 1.3 Specification ==
59 59  
60 60  
... ... @@ -63,23 +63,6 @@
63 63  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 -
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 -* Distance resolution : 1cm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 83  (% style="color:#037691" %)**LoRa Spec:**
84 84  
85 85  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -100,447 +100,377 @@
100 100  * Sleep Mode: 5uA @ 3.3v
101 101  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 102  
103 -== 1.4 Applications ==
104 104  
90 +== 1.4 Suitable Container & Liquid ==
105 105  
106 -* Horizontal distance measurement
107 -* Parking management system
108 -* Object proximity and presence detection
109 -* Intelligent trash can management system
110 -* Robot obstacle avoidance
111 -* Automatic control
112 -* Sewer
113 113  
114 -(% style="display:none" %)
93 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
94 +* Container shape is regular, and surface is smooth.
95 +* Container Thickness:
96 +** Pure metal material.  2~~8mm, best is 3~~5mm
97 +** Pure non metal material: <10 mm
98 +* Pure liquid without irregular deposition.
115 115  
116 -== 1.5 Sleep mode and working mode ==
117 117  
101 +(% style="display:none" %)
118 118  
119 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
103 +== 1.5 Install DDS20-LB ==
120 120  
121 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122 122  
106 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
123 123  
124 -== 1.6 Button & LEDs ==
108 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
125 125  
110 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
126 126  
127 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
128 128  
113 +(((
114 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
115 +)))
129 129  
130 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
132 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
117 +(((
118 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
135 135  )))
136 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 -)))
141 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142 142  
143 -== 1.7 BLE connection ==
121 +[[image:image-20230613143052-5.png]]
144 144  
145 145  
146 -LDS12-LB support BLE remote configure.
124 +No polish needed if the container is shine metal surface without paint or non-metal container.
147 147  
148 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
126 +[[image:image-20230613143125-6.png]]
149 149  
150 -* Press button to send an uplink
151 -* Press button to active device.
152 -* Device Power on or reset.
153 153  
154 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
129 +(((
130 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
131 +)))
155 155  
133 +(((
134 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
135 +)))
156 156  
157 -== 1.8 Pin Definitions ==
137 +(((
138 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
139 +)))
158 158  
141 +(((
142 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
143 +)))
159 159  
160 -[[image:image-20230805144259-1.png||height="413" width="741"]]
161 161  
162 -== 1.9 Mechanical ==
146 +(((
147 +(% style="color:blue" %)**LED Status:**
148 +)))
163 163  
150 +* (((
151 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 +)))
164 164  
165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
154 +* (((
155 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
156 +)))
157 +* (((
158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
159 +)))
166 166  
161 +(((
162 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
163 +)))
167 167  
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169 169  
166 +(((
167 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
168 +)))
170 170  
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172 172  
171 +(((
172 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
173 +)))
173 173  
174 -(% style="color:blue" %)**Probe Mechanical:**
175 +(((
176 +Prepare Eproxy AB glue.
177 +)))
175 175  
179 +(((
180 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
181 +)))
176 176  
177 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183 +(((
184 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
185 +)))
178 178  
187 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
179 179  
180 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
181 181  
182 -== 2.1 How it works ==
190 +(((
191 +(% style="color:red" %)**Note :**
183 183  
193 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
194 +)))
184 184  
185 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
196 +(((
197 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
198 +)))
186 186  
187 -(% style="display:none" %) (%%)
188 188  
189 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
201 +== 1.6 Applications ==
190 190  
191 191  
192 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
204 +* Smart liquid control solution
193 193  
194 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
206 +* Smart liquefied gas solution
195 195  
196 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
197 197  
209 +== 1.7 Precautions ==
198 198  
199 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
200 200  
201 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
212 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
202 202  
203 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
214 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
204 204  
216 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
205 205  
206 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
218 +(% style="display:none" %)
207 207  
220 +== 1.8 Sleep mode and working mode ==
208 208  
209 -(% style="color:blue" %)**Register the device**
210 210  
211 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
223 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
212 212  
225 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
213 213  
214 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
215 215  
216 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
228 +== 1.9 Button & LEDs ==
217 217  
218 218  
219 -(% style="color:blue" %)**Add APP EUI in the application**
231 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
220 220  
221 221  
222 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
234 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
235 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
236 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
237 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
238 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
239 +)))
240 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
241 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
242 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
244 +)))
245 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
223 223  
224 224  
225 -(% style="color:blue" %)**Add APP KEY**
248 +== 1.10 BLE connection ==
226 226  
227 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
228 228  
251 +DDS20-LB support BLE remote configure.
229 229  
230 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
253 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
231 231  
255 +* Press button to send an uplink
256 +* Press button to active device.
257 +* Device Power on or reset.
232 232  
233 -Press the button for 5 seconds to activate the LDS12-LB.
259 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
234 234  
235 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236 236  
237 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
262 +== 1.11 Pin Definitions ==
238 238  
264 +[[image:image-20230523174230-1.png]]
239 239  
240 -== 2.3 ​Uplink Payload ==
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
267 +== 1.12 Mechanical ==
243 243  
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
270 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
246 246  
247 -The Payload format is as below.
248 248  
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
251 -**Size(bytes)**
252 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
273 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
254 254  
255 -Example parse in TTNv3
256 256  
257 -[[image:image-20230805103904-1.png||height="131" width="711"]]
276 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
258 258  
259 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
260 260  
261 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
279 +(% style="color:blue" %)**Probe Mechanical:**
262 262  
263 -(% style="color:blue" %)**Frequency Band**:
281 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
264 264  
265 -0x01: EU868
266 266  
267 -0x02: US915
284 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
268 268  
269 -0x03: IN865
270 270  
271 -0x04: AU915
287 += 2. Configure DDS20-LB to connect to LoRaWAN network =
272 272  
273 -0x05: KZ865
289 +== 2.1 How it works ==
274 274  
275 -0x06: RU864
276 276  
277 -0x07: AS923
292 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
278 278  
279 -0x08: AS923-1
294 +(% style="display:none" %) (%%)
280 280  
281 -0x09: AS923-2
296 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
282 282  
283 -0x0a: AS923-3
284 284  
285 -0x0b: CN470
299 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
286 286  
287 -0x0c: EU433
301 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
288 288  
289 -0x0d: KR920
303 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
290 290  
291 -0x0e: MA869
292 292  
293 -(% style="color:blue" %)**Sub-Band**:
306 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
294 294  
295 -AU915 and US915:value 0x00 ~~ 0x08
308 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
296 296  
297 -CN470: value 0x0B ~~ 0x0C
310 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
298 298  
299 -Other Bands: Always 0x00
300 300  
301 -(% style="color:blue" %)**Battery Info**:
313 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
302 302  
303 -Check the battery voltage.
304 304  
305 -Ex1: 0x0B45 = 2885mV
316 +(% style="color:blue" %)**Register the device**
306 306  
307 -Ex2: 0x0B49 = 2889mV
318 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
308 308  
309 309  
310 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
321 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
311 311  
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
312 312  
313 -(((
314 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
315 315  
316 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
326 +(% style="color:blue" %)**Add APP EUI in the application**
317 317  
318 -Uplink Payload totals 11 bytes.
319 -)))
320 320  
321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
322 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 -**Size(bytes)**
324 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 -[[Message Type>>||anchor="HMessageType"]]
331 -)))
329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
332 332  
333 -[[image:image-20230805104104-2.png||height="136" width="754"]]
334 334  
332 +(% style="color:blue" %)**Add APP KEY**
335 335  
336 -==== (% style="color:blue" %)**Battery Info**(%%) ====
334 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
337 337  
338 338  
339 -Check the battery voltage for LDS12-LB.
337 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
340 340  
341 -Ex1: 0x0B45 = 2885mV
342 342  
343 -Ex2: 0x0B49 = 2889mV
340 +Press the button for 5 seconds to activate the DDS20-LB.
344 344  
342 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
345 345  
346 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
344 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
347 347  
348 348  
349 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
347 +== 2.3  ​Uplink Payload ==
350 350  
351 351  
352 -**Example**:
350 +(((
351 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
352 +)))
353 353  
354 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
354 +(((
355 +Uplink payload includes in total 8 bytes.
356 +)))
355 355  
356 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
358 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
359 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
360 +**Size(bytes)**
361 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
362 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
363 +[[Distance>>||anchor="H2.3.2A0Distance"]]
364 +(unit: mm)
365 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
366 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
367 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
357 357  
369 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
358 358  
359 -==== (% style="color:blue" %)**Distance**(%%) ====
360 360  
372 +=== 2.3.1  Battery Info ===
361 361  
362 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363 363  
375 +Check the battery voltage for DDS20-LB.
364 364  
365 -**Example**:
377 +Ex1: 0x0B45 = 2885mV
366 366  
367 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
379 +Ex2: 0x0B49 = 2889mV
368 368  
369 369  
370 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
382 +=== 2.3.2  Distance ===
371 371  
372 372  
373 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
385 +(((
386 +Get the distance. Flat object range 20mm - 2000mm.
387 +)))
374 374  
389 +(((
390 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
375 375  
376 -**Example**:
392 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
393 +)))
377 377  
378 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
395 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
379 379  
380 -Customers can judge whether they need to adjust the environment based on the signal strength.
397 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
381 381  
382 382  
383 -**1) When the sensor detects valid data:**
400 +=== 2.3.3  Interrupt Pin ===
384 384  
385 -[[image:image-20230805155335-1.png||height="145" width="724"]]
386 386  
387 -
388 -**2) When the sensor detects invalid data:**
389 -
390 -[[image:image-20230805155428-2.png||height="139" width="726"]]
391 -
392 -
393 -**3) When the sensor is not connected:**
394 -
395 -[[image:image-20230805155515-3.png||height="143" width="725"]]
396 -
397 -
398 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
399 -
400 -
401 401  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
402 402  
403 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
404 -
405 405  **Example:**
406 406  
407 -If byte[0]&0x01=0x00 : Normal uplink packet.
407 +0x00: Normal uplink packet.
408 408  
409 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
409 +0x01: Interrupt Uplink Packet.
410 410  
411 411  
412 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
412 +=== 2.3.4  DS18B20 Temperature sensor ===
413 413  
414 414  
415 -Characterize the internal temperature value of the sensor.
415 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
416 416  
417 -**Example: **
418 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
417 +**Example**:
420 420  
419 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
421 421  
422 -==== (% style="color:blue" %)**Message Type**(%%) ====
421 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
423 423  
424 424  
424 +=== 2.3.5  Sensor Flag ===
425 +
426 +
425 425  (((
426 -For a normal uplink payload, the message type is always 0x01.
428 +0x01: Detect Ultrasonic Sensor
427 427  )))
428 428  
429 429  (((
430 -Valid Message Type:
432 +0x00: No Ultrasonic Sensor
431 431  )))
432 432  
433 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
437 437  
438 -[[image:image-20230805150315-4.png||height="233" width="723"]]
436 +=== 2.3.6  Decode payload in The Things Network ===
439 439  
440 440  
441 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
439 +While using TTN network, you can add the payload format to decode the payload.
442 442  
441 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
443 443  
444 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
443 +The payload decoder function for TTN V3 is here:
445 445  
446 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
447 -
448 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
449 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 -**Size(bytes)**
451 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
452 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 -Reserve(0xFF)
454 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 -LiDAR temp
456 -)))|(% style="width:85px" %)Unix TimeStamp
457 -
458 -**Interrupt flag & Interrupt level:**
459 -
460 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
461 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 -**Size(bit)**
463 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
464 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 -Interrupt flag
445 +(((
446 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
466 466  )))
467 467  
468 -* (((
469 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
470 -)))
471 471  
472 -For example, in the US915 band, the max payload for different DR is:
450 +== 2.4  Uplink Interval ==
473 473  
474 -**a) DR0:** max is 11 bytes so one entry of data
475 475  
476 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
453 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
477 477  
478 -**c) DR2:** total payload includes 11 entries of data
479 479  
480 -**d) DR3:** total payload includes 22 entries of data.
456 +== 2.5  ​Show Data in DataCake IoT Server ==
481 481  
482 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
483 483  
484 -
485 -**Downlink:**
486 -
487 -0x31 64 CC 68 0C 64 CC 69 74 05
488 -
489 -[[image:image-20230805144936-2.png||height="113" width="746"]]
490 -
491 -**Uplink:**
492 -
493 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
494 -
495 -
496 -**Parsed Value:**
497 -
498 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
499 -
500 -
501 -[360,176,30,High,True,2023-08-04 02:53:00],
502 -
503 -[355,168,30,Low,False,2023-08-04 02:53:29],
504 -
505 -[245,211,30,Low,False,2023-08-04 02:54:29],
506 -
507 -[57,700,30,Low,False,2023-08-04 02:55:29],
508 -
509 -[361,164,30,Low,True,2023-08-04 02:56:00],
510 -
511 -[337,184,30,Low,False,2023-08-04 02:56:40],
512 -
513 -[20,4458,30,Low,False,2023-08-04 02:57:40],
514 -
515 -[362,173,30,Low,False,2023-08-04 02:58:53],
516 -
517 -
518 -**History read from serial port:**
519 -
520 -[[image:image-20230805145056-3.png]]
521 -
522 -
523 -=== 2.3.4 Decode payload in The Things Network ===
524 -
525 -
526 -While using TTN network, you can add the payload format to decode the payload.
527 -
528 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
529 -
530 -
531 531  (((
532 -The payload decoder function for TTN is here:
533 -)))
534 -
535 -(((
536 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
537 -)))
538 -
539 -
540 -== 2.4 ​Show Data in DataCake IoT Server ==
541 -
542 -
543 -(((
544 544  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
545 545  )))
546 546  
... ... @@ -562,7 +562,7 @@
562 562  
563 563  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
564 564  
565 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
481 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
566 566  
567 567  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
568 568  
... ... @@ -572,22 +572,22 @@
572 572  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
573 573  
574 574  
575 -== 2.5 Datalog Feature ==
491 +== 2.6 Datalog Feature ==
576 576  
577 577  
578 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
494 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
579 579  
580 580  
581 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
497 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
582 582  
583 583  
584 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
500 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
585 585  
586 586  * (((
587 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
503 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
588 588  )))
589 589  * (((
590 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
506 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
591 591  )))
592 592  
593 593  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -595,10 +595,10 @@
595 595  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596 596  
597 597  
598 -=== 2.5.2 Unix TimeStamp ===
514 +=== 2.6.2 Unix TimeStamp ===
599 599  
600 600  
601 -LDS12-LB uses Unix TimeStamp format based on
517 +DDS20-LB uses Unix TimeStamp format based on
602 602  
603 603  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604 604  
... ... @@ -612,23 +612,23 @@
612 612  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613 613  
614 614  
615 -=== 2.5.3 Set Device Time ===
531 +=== 2.6.3 Set Device Time ===
616 616  
617 617  
618 618  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619 619  
620 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
536 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
621 621  
622 622  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623 623  
624 624  
625 -=== 2.5.4 Poll sensor value ===
541 +=== 2.6.4 Poll sensor value ===
626 626  
627 627  
628 628  Users can poll sensor values based on timestamps. Below is the downlink command.
629 629  
630 630  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
547 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 632  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 633  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634 634  
... ... @@ -645,108 +645,24 @@
645 645  )))
646 646  
647 647  (((
648 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
564 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
649 649  )))
650 650  
651 651  
652 -== 2.6 Frequency Plans ==
568 +== 2.7 Frequency Plans ==
653 653  
654 654  
655 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
571 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
656 656  
657 657  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
658 658  
659 659  
660 -== 2.7 LiDAR ToF Measurement ==
576 += 3. Configure DDS20-LB =
661 661  
662 -=== 2.7.1 Principle of Distance Measurement ===
663 -
664 -
665 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666 -
667 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
668 -
669 -
670 -=== 2.7.2 Distance Measurement Characteristics ===
671 -
672 -
673 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674 -
675 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
676 -
677 -
678 -(((
679 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 -)))
681 -
682 -(((
683 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 -)))
685 -
686 -(((
687 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 -)))
689 -
690 -
691 -(((
692 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 -)))
694 -
695 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696 -
697 -(((
698 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 -)))
700 -
701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702 -
703 -(((
704 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 -)))
706 -
707 -
708 -=== 2.7.3 Notice of usage ===
709 -
710 -
711 -Possible invalid /wrong reading for LiDAR ToF tech:
712 -
713 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717 -
718 -=== 2.7.4  Reflectivity of different objects ===
719 -
720 -
721 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
738 -Unpolished white metal surface
739 -)))|(% style="width:93px" %)130%
740 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743 -
744 -= 3. Configure LDS12-LB =
745 -
746 746  == 3.1 Configure Methods ==
747 747  
748 748  
749 -LDS12-LB supports below configure method:
581 +DDS20-LB supports below configure method:
750 750  
751 751  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
752 752  
... ... @@ -754,6 +754,7 @@
754 754  
755 755  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
756 756  
589 +
757 757  == 3.2 General Commands ==
758 758  
759 759  
... ... @@ -768,10 +768,10 @@
768 768  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
769 769  
770 770  
771 -== 3.3 Commands special design for LDS12-LB ==
604 +== 3.3 Commands special design for DDS20-LB ==
772 772  
773 773  
774 -These commands only valid for LDS12-LB, as below:
607 +These commands only valid for DDS20-LB, as below:
775 775  
776 776  
777 777  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -786,7 +786,7 @@
786 786  )))
787 787  
788 788  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
789 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
622 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
790 790  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
791 791  30000
792 792  OK
... ... @@ -822,24 +822,20 @@
822 822  === 3.3.2 Set Interrupt Mode ===
823 823  
824 824  
825 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
658 +Feature, Set Interrupt mode for PA8 of pin.
826 826  
827 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
660 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
828 828  
829 829  (% style="color:blue" %)**AT Command: AT+INTMOD**
830 830  
831 831  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
832 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
665 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
833 833  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
834 834  0
835 835  OK
836 836  the mode is 0 =Disable Interrupt
837 837  )))
838 -|(% style="width:154px" %)(((
839 -AT+INTMOD=2
840 -
841 -(default)
842 -)))|(% style="width:196px" %)(((
671 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
843 843  Set Transmit Interval
844 844  0. (Disable Interrupt),
845 845  ~1. (Trigger by rising and falling edge)
... ... @@ -857,39 +857,11 @@
857 857  
858 858  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
859 859  
860 -=== 3.3.3  Set Power Output Duration ===
861 861  
862 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
863 -
864 -~1. first enable the power output to external sensor,
865 -
866 -2. keep it on as per duration, read sensor value and construct uplink payload
867 -
868 -3. final, close the power output.
869 -
870 -(% style="color:blue" %)**AT Command: AT+3V3T**
871 -
872 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
873 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
875 -OK
876 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
879 -
880 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 -Format: Command Code (0x07) followed by 3 bytes.
882 -
883 -The first byte is 01,the second and third bytes are the time to turn on.
884 -
885 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
888 -
889 889  = 4. Battery & Power Consumption =
890 890  
891 891  
892 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
693 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
893 893  
894 894  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
895 895  
... ... @@ -898,7 +898,7 @@
898 898  
899 899  
900 900  (% class="wikigeneratedid" %)
901 -User can change firmware LDS12-LB to:
702 +User can change firmware DDS20-LB to:
902 902  
903 903  * Change Frequency band/ region.
904 904  
... ... @@ -906,7 +906,7 @@
906 906  
907 907  * Fix bugs.
908 908  
909 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
710 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
910 910  
911 911  Methods to Update Firmware:
912 912  
... ... @@ -914,40 +914,42 @@
914 914  
915 915  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
916 916  
718 +
917 917  = 6. FAQ =
918 918  
919 -== 6.1 What is the frequency plan for LDS12-LB? ==
721 +== 6.1  What is the frequency plan for DDS20-LB? ==
920 920  
921 921  
922 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
724 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
923 923  
924 924  
925 -= 7Trouble Shooting =
727 +== 6.2  Can I use DDS20-LB in condensation environment? ==
926 926  
927 -== 7.1 AT Command input doesn't work ==
928 928  
730 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
929 929  
930 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
931 931  
733 += 7.  Trouble Shooting =
932 932  
933 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
735 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
934 934  
935 935  
936 -(((
937 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
938 -)))
738 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
939 939  
940 -(((
941 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
942 -)))
943 943  
741 +== 7.2  AT Command input doesn't work ==
944 944  
945 -(((
946 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
947 -)))
948 948  
744 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
745 +
746 +
747 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
748 +
749 +
949 949  (((
950 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
751 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
752 +
753 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
951 951  )))
952 952  
953 953  
... ... @@ -954,7 +954,7 @@
954 954  = 8. Order Info =
955 955  
956 956  
957 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
760 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
958 958  
959 959  (% style="color:red" %)**XXX**(%%): **The default frequency band**
960 960  
... ... @@ -974,12 +974,13 @@
974 974  
975 975  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976 976  
780 +
977 977  = 9. ​Packing Info =
978 978  
979 979  
980 980  (% style="color:#037691" %)**Package Includes**:
981 981  
982 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
786 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
983 983  
984 984  (% style="color:#037691" %)**Dimension and weight**:
985 985  
... ... @@ -991,6 +991,7 @@
991 991  
992 992  * Weight / pcs : g
993 993  
798 +
994 994  = 10. Support =
995 995  
996 996  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.4 KB
Content