Last modified by Mengting Qiu on 2023/12/14 11:15

From version 113.2
edited by Xiaoling
on 2023/11/10 09:15
Change comment: There is no comment for this version
To version 126.2
edited by Xiaoling
on 2023/11/29 10:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,170 +19,72 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
23 23  
24 24  
25 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
26 26  
27 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
28 28  
29 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
30 30  
31 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
32 32  
33 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
36 36  
37 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20231110091506-4.png||height="391" width="768"]]
40 -
41 -
42 42  == 1.2 ​Features ==
43 43  
44 44  
45 -* LoRaWAN 1.0.3 Class A
46 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 -* Ultra-low power consumption
48 -* Laser technology for distance detection
49 -* Measure Distance: 0.1m~~12m
50 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 -* Monitor Battery Level
52 -* Support Bluetooth v5.1 and LoRaWAN remote configure
53 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
54 54  * AT Commands to change parameters
55 -* Downlink to change configure
56 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
57 57  
58 -== 1.3 Specification ==
59 59  
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
52 +== 1.3 Specification ==
62 62  
63 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
67 67  
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 -* Distance resolution : 1cm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
82 82  
83 -(% style="color:#037691" %)**LoRa Spec:**
84 84  
85 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 -* Max +22 dBm constant RF output vs.
87 -* RX sensitivity: down to -139 dBm.
88 -* Excellent blocking immunity
89 89  
90 -(% style="color:#037691" %)**Battery:**
67 +== 1.4 Power Consumption ==
91 91  
92 -* Li/SOCI2 un-chargeable battery
93 -* Capacity: 8500mAh
94 -* Self-Discharge: <1% / Year @ 25°C
95 -* Max continuously current: 130mA
96 -* Max boost current: 2A, 1 second
97 97  
98 -(% style="color:#037691" %)**Power Consumption**
70 +(% style="color:#037691" %)**Battery Power Mode:**
99 99  
100 -* Sleep Mode: 5uA @ 3.3v
101 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
72 +* Idle: 0.003 mA @ 3.3v
73 +* Max : 360 mA
102 102  
103 -== 1.4 Applications ==
75 +(% style="color:#037691" %)**Continuously mode**:
104 104  
77 +* Idle: 21 mA @ 3.3v
78 +* Max : 360 mA
105 105  
106 -* Horizontal distance measurement
107 -* Parking management system
108 -* Object proximity and presence detection
109 -* Intelligent trash can management system
110 -* Robot obstacle avoidance
111 -* Automatic control
112 -* Sewer
113 113  
114 -(% style="display:none" %)
115 115  
116 -== 1.5 Sleep mode and working mode ==
82 += 2. Configure DS20L to connect to LoRaWAN network =
117 117  
118 -
119 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
120 -
121 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122 -
123 -
124 -== 1.6 Button & LEDs ==
125 -
126 -
127 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
128 -
129 -
130 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
132 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
135 -)))
136 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 -)))
141 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142 -
143 -== 1.7 BLE connection ==
144 -
145 -
146 -LDS12-LB support BLE remote configure.
147 -
148 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149 -
150 -* Press button to send an uplink
151 -* Press button to active device.
152 -* Device Power on or reset.
153 -
154 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155 -
156 -
157 -== 1.8 Pin Definitions ==
158 -
159 -
160 -[[image:image-20230805144259-1.png||height="413" width="741"]]
161 -
162 -== 1.9 Mechanical ==
163 -
164 -
165 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166 -
167 -
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169 -
170 -
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172 -
173 -
174 -(% style="color:blue" %)**Probe Mechanical:**
175 -
176 -
177 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178 -
179 -
180 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
181 -
182 182  == 2.1 How it works ==
183 183  
184 184  
185 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
87 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
186 186  
187 187  (% style="display:none" %) (%%)
188 188  
... ... @@ -191,15 +191,14 @@
191 191  
192 192  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
193 193  
194 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
96 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
195 195  
196 -[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
98 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
197 197  
100 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
198 198  
199 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
102 +Each DS20L is shipped with a sticker with the default device EUI as below:
200 200  
201 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
202 -
203 203  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
204 204  
205 205  
... ... @@ -227,10 +227,11 @@
227 227  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
228 228  
229 229  
230 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
131 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
231 231  
133 +[[image:image-20231128133704-1.png||height="189" width="441"]]
232 232  
233 -Press the button for 5 seconds to activate the LDS12-LB.
135 +Press the button for 5 seconds to activate the DS20L.
234 234  
235 235  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236 236  
... ... @@ -242,7 +242,7 @@
242 242  === 2.3.1 Device Status, FPORT~=5 ===
243 243  
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
147 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
246 246  
247 247  The Payload format is as below.
248 248  
... ... @@ -254,9 +254,9 @@
254 254  
255 255  Example parse in TTNv3
256 256  
257 -[[image:image-20230805103904-1.png||height="131" width="711"]]
159 +[[image:1701149922873-259.png]]
258 258  
259 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
161 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
260 260  
261 261  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
262 262  
... ... @@ -310,219 +310,120 @@
310 310  === 2.3.2 Uplink Payload, FPORT~=2 ===
311 311  
312 312  
313 -(((
314 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
215 +==== (% style="color:red" %)**MOD~=1**(%%) ====
315 315  
316 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
217 +Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
317 317  
318 -Uplink Payload totals 11 bytes.
319 -)))
219 +Uplink Payload totals 10 bytes.
320 320  
321 321  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
322 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 -**Size(bytes)**
324 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 -[[Message Type>>||anchor="HMessageType"]]
331 -)))
222 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:120px" %)**4**
223 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
332 332  
333 -[[image:image-20230805104104-2.png||height="136" width="754"]]
225 +[[image:1701155076393-719.png]]
334 334  
227 +(% style="color:blue" %)**Battery Info:**
335 335  
336 -==== (% style="color:blue" %)**Battery Info**(%%) ====
229 +Check the battery voltage for DS20L
337 337  
231 +Ex1: 0x0E10 = 3600mV
338 338  
339 -Check the battery voltage for LDS12-LB.
340 340  
341 -Ex1: 0x0B45 = 2885mV
234 +(% style="color:blue" %)**MOD & Alarm & Interrupt:**
342 342  
343 -Ex2: 0x0B49 = 2889mV
236 +(% style="color:red" %)**MOD:**
344 344  
238 +**Example: ** (0x60>>6) & 0x3f =1
345 345  
346 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
240 +**0x01:**  Regularly detect distance and report.
241 +**0x02: ** Uninterrupted measurement (external power supply).
347 347  
243 +(% style="color:red" %)**Alarm:**
348 348  
349 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
245 +When the detection distance exceeds the limit, the alarm flag is set to 1.
350 350  
247 +(% style="color:red" %)**Interrupt:**
351 351  
352 -**Example**:
249 +Whether it is an external interrupt.
353 353  
354 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
355 355  
356 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
252 +(% style="color:blue" %)**Distance info:**
357 357  
358 -
359 -==== (% style="color:blue" %)**Distance**(%%) ====
360 -
361 -
362 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363 -
364 -
365 365  **Example**:
366 366  
367 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
256 +If payload is: 0708H: distance = 0708H = 1800 mm
368 368  
369 369  
370 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
259 +(% style="color:blue" %)**Sensor State:**
371 371  
261 +Ex1: 0x00: Normal collection distance
372 372  
373 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
263 +Ex2 0x0x: Distance collection is wrong
374 374  
375 375  
376 -**Example**:
266 +(% style="color:blue" %)**Interript Count:**
377 377  
378 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
268 +If payload is:000007D0H: count = 07D0H =2000
379 379  
380 -Customers can judge whether they need to adjust the environment based on the signal strength.
381 381  
382 382  
383 -**1) When the sensor detects valid data:**
272 +==== (% style="color:red" %)**MOD~=2**(%%)** ** ====
384 384  
385 -[[image:image-20230805155335-1.png||height="145" width="724"]]
274 +Uninterrupted measurement. When the distance exceeds the limit, the output IO is set high and reports are reported every five minutes. The time can be set and powered by an external power supply.Uplink Payload totals 11bytes.
386 386  
387 -
388 -**2) When the sensor detects invalid data:**
389 -
390 -[[image:image-20230805155428-2.png||height="139" width="726"]]
391 -
392 -
393 -**3) When the sensor is not connected:**
394 -
395 -[[image:image-20230805155515-3.png||height="143" width="725"]]
396 -
397 -
398 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
399 -
400 -
401 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
402 -
403 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
404 -
405 -**Example:**
406 -
407 -If byte[0]&0x01=0x00 : Normal uplink packet.
408 -
409 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
410 -
411 -
412 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
413 -
414 -
415 -Characterize the internal temperature value of the sensor.
416 -
417 -**Example: **
418 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
420 -
421 -
422 -==== (% style="color:blue" %)**Message Type**(%%) ====
423 -
424 -
425 -(((
426 -For a normal uplink payload, the message type is always 0x01.
427 -)))
428 -
429 -(((
430 -Valid Message Type:
431 -)))
432 -
433 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
437 -
438 -[[image:image-20230805150315-4.png||height="233" width="723"]]
439 -
440 -
441 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
442 -
443 -
444 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
445 -
446 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
447 -
448 448  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
449 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 -**Size(bytes)**
451 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
452 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 -Reserve(0xFF)
454 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 -LiDAR temp
456 -)))|(% style="width:85px" %)Unix TimeStamp
277 +|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
278 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+Alarm+Do+Limit flag|(% style="width:74px" %)Distance Limit Alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
457 457  
458 -**Interrupt flag & Interrupt level:**
280 +[[image:1701155150328-206.png]]
459 459  
460 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
461 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 -**Size(bit)**
463 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
464 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 -Interrupt flag
466 -)))
282 +(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
467 467  
468 -* (((
469 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
470 -)))
284 +(% style="color:red" %)**MOD:**
471 471  
472 -For example, in the US915 band, the max payload for different DR is:
286 +**Example: ** (0x60>>6) & 0x3f =1
473 473  
474 -**a) DR0:** max is 11 bytes so one entry of data
288 +**0x01:**  Regularly detect distance and report.
289 +**0x02: ** Uninterrupted measurement (external power supply).
475 475  
476 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
291 +(% style="color:red" %)**Alarm:**
477 477  
478 -**c) DR2:** total payload includes 11 entries of data
293 +When the detection distance exceeds the limit, the alarm flag is set to 1.
479 479  
480 -**d) DR3:** total payload includes 22 entries of data.
295 +(% style="color:red" %)**Do:**
481 481  
482 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
297 +When the distance exceeds the set threshold, pull the Do pin high.
483 483  
299 +(% style="color:red" %)**Limit flag:**
484 484  
485 -**Downlink:**
301 +Mode for setting threshold: **0~~5**
486 486  
487 -0x31 64 CC 68 0C 64 CC 69 74 05
303 +**0:** does not use upper and lower limits
488 488  
489 -[[image:image-20230805144936-2.png||height="113" width="746"]]
305 +**1:** Use upper and lower limits
490 490  
491 -**Uplink:**
307 +**2:** is less than the lower limit value
492 492  
493 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
309 +**3:** is greater than the lower limit value
494 494  
311 +**4:** is less than the upper limit
495 495  
496 -**Parsed Value:**
313 +**5:** is greater than the upper limit
497 497  
498 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
499 499  
316 +(% style="color:blue" %)**Upper limit:**
500 500  
501 -[360,176,30,High,True,2023-08-04 02:53:00],
318 +The upper limit of the threshold cannot exceed 2000mm.
502 502  
503 -[355,168,30,Low,False,2023-08-04 02:53:29],
504 504  
505 -[245,211,30,Low,False,2023-08-04 02:54:29],
321 +(% style="color:blue" %)**Lower limit:**
506 506  
507 -[57,700,30,Low,False,2023-08-04 02:55:29],
323 +The lower limit of the threshold cannot be less than 3mm.
508 508  
509 -[361,164,30,Low,True,2023-08-04 02:56:00],
510 510  
511 -[337,184,30,Low,False,2023-08-04 02:56:40],
326 +== 2.4 Decode payload in The Things Network ==
512 512  
513 -[20,4458,30,Low,False,2023-08-04 02:57:40],
514 514  
515 -[362,173,30,Low,False,2023-08-04 02:58:53],
516 -
517 -
518 -**History read from serial port:**
519 -
520 -[[image:image-20230805145056-3.png]]
521 -
522 -
523 -=== 2.3.4 Decode payload in The Things Network ===
524 -
525 -
526 526  While using TTN network, you can add the payload format to decode the payload.
527 527  
528 528  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -533,11 +533,11 @@
533 533  )))
534 534  
535 535  (((
536 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
339 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
537 537  )))
538 538  
539 539  
540 -== 2.4 ​Show Data in DataCake IoT Server ==
343 +== 2.5 ​Show Data in DataCake IoT Server ==
541 541  
542 542  
543 543  (((
... ... @@ -562,7 +562,7 @@
562 562  
563 563  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
564 564  
565 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
368 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
566 566  
567 567  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
568 568  
... ... @@ -569,184 +569,23 @@
569 569  
570 570  After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
571 571  
572 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
375 +[[image:image-20231129100454-2.png||height="501" width="928"]]
573 573  
574 574  
575 -== 2.5 Datalog Feature ==
576 -
577 -
578 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
579 -
580 -
581 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
582 -
583 -
584 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
585 -
586 -* (((
587 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
588 -)))
589 -* (((
590 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
591 -)))
592 -
593 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
594 -
595 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596 -
597 -
598 -=== 2.5.2 Unix TimeStamp ===
599 -
600 -
601 -LDS12-LB uses Unix TimeStamp format based on
602 -
603 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604 -
605 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
606 -
607 -Below is the converter example
608 -
609 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
610 -
611 -
612 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613 -
614 -
615 -=== 2.5.3 Set Device Time ===
616 -
617 -
618 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619 -
620 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
621 -
622 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623 -
624 -
625 -=== 2.5.4 Poll sensor value ===
626 -
627 -
628 -Users can poll sensor values based on timestamps. Below is the downlink command.
629 -
630 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634 -
635 -(((
636 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
637 -)))
638 -
639 -(((
640 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
641 -)))
642 -
643 -(((
644 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
645 -)))
646 -
647 -(((
648 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
649 -)))
650 -
651 -
652 652  == 2.6 Frequency Plans ==
653 653  
654 654  
655 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
381 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
656 656  
657 657  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
658 658  
659 659  
660 -== 2.7 LiDAR ToF Measurement ==
386 += 3. Configure DS20L =
661 661  
662 -=== 2.7.1 Principle of Distance Measurement ===
663 -
664 -
665 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666 -
667 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
668 -
669 -
670 -=== 2.7.2 Distance Measurement Characteristics ===
671 -
672 -
673 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674 -
675 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
676 -
677 -
678 -(((
679 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 -)))
681 -
682 -(((
683 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 -)))
685 -
686 -(((
687 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 -)))
689 -
690 -
691 -(((
692 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 -)))
694 -
695 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696 -
697 -(((
698 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 -)))
700 -
701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702 -
703 -(((
704 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 -)))
706 -
707 -
708 -=== 2.7.3 Notice of usage ===
709 -
710 -
711 -Possible invalid /wrong reading for LiDAR ToF tech:
712 -
713 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717 -
718 -=== 2.7.4  Reflectivity of different objects ===
719 -
720 -
721 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
738 -Unpolished white metal surface
739 -)))|(% style="width:93px" %)130%
740 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743 -
744 -= 3. Configure LDS12-LB =
745 -
746 746  == 3.1 Configure Methods ==
747 747  
748 748  
749 -LDS12-LB supports below configure method:
391 +DS20L supports below configure method:
750 750  
751 751  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
752 752  
... ... @@ -754,6 +754,8 @@
754 754  
755 755  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
756 756  
399 +
400 +
757 757  == 3.2 General Commands ==
758 758  
759 759  
... ... @@ -768,10 +768,10 @@
768 768  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
769 769  
770 770  
771 -== 3.3 Commands special design for LDS12-LB ==
415 +== 3.3 Commands special design for DS20L ==
772 772  
773 773  
774 -These commands only valid for LDS12-LB, as below:
418 +These commands only valid for DS20L, as below:
775 775  
776 776  
777 777  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -813,7 +813,7 @@
813 813  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
814 814  )))
815 815  * (((
816 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
460 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
817 817  
818 818  
819 819  
... ... @@ -836,7 +836,7 @@
836 836  the mode is 0 =Disable Interrupt
837 837  )))
838 838  |(% style="width:154px" %)(((
839 -AT+INTMOD=2
483 +AT+INTMOD=3
840 840  
841 841  (default)
842 842  )))|(% style="width:196px" %)(((
... ... @@ -857,39 +857,114 @@
857 857  
858 858  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
859 859  
860 -=== 3.3.3  Set Power Output Duration ===
861 861  
862 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
863 863  
864 -~1. first enable the power output to external sensor,
506 +=== 3.3.3 Set work mode ===
865 865  
866 -2. keep it on as per duration, read sensor value and construct uplink payload
867 867  
868 -3. final, close the power output.
509 +Feature: Switch working mode
869 869  
870 -(% style="color:blue" %)**AT Command: AT+3V3T**
511 +(% style="color:blue" %)**AT Command: AT+MOD**
871 871  
513 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
514 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
515 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
516 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
517 +OK
518 +Attention:Take effect after ATZ
519 +)))
520 +
521 +(% style="color:blue" %)**Downlink Command:**
522 +
523 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
524 +
525 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
526 +
527 +
528 +
529 +=== 3.3.4 Set threshold and threshold mode ===
530 +
531 +
532 +Feature, Set threshold and threshold mode
533 +
534 +When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
535 +
536 +(% style="color:blue" %)**AT Command: AT+DOL**
537 +
872 872  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
873 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
539 +|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
540 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
541 +0,0,0,0,400
875 875  OK
876 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
543 +)))
544 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
879 879  
880 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 -Format: Command Code (0x07) followed by 3 bytes.
882 882  
883 -The first byte is 01,the second and third bytes are the time to turn on.
884 884  
885 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 +|(% rowspan="11" style="color:blue; width:120px" %)(((
550 +
888 888  
552 +
553 +
554 +
555 +
556 +
557 +
558 +
559 +
560 +
561 +
562 +
563 +
564 +
565 +
566 +
567 +
568 +
569 +
570 +
571 +**AT+DOL=5,1800,0,0,400**
572 +)))|(% rowspan="6" style="width:240px" %)The first bit sets the limit mode|(% style="width:150px" %)0: Do not use upper and lower limits
573 +|(% style="width:251px" %)1: Use upper and lower limits
574 +|(% style="width:251px" %)2: Less than the lower limit
575 +|(% style="width:251px" %)3: Greater than the lower limit
576 +|(% style="width:251px" %)4: Less than the upper limit
577 +|(% style="width:251px" %)5: Greater than the upper limit
578 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
579 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
580 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
581 +|(% style="width:251px" %)1 Person or object counting statistics
582 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
583 +0~~10000ms
584 +
585 +
586 +)))
587 +
588 +
589 +
590 +(% style="color:blue" %)**Downlink Command: 0x07**
591 +
592 +Format: Command Code (0x07) followed by 9bytes.
593 +
594 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
595 +
596 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
597 +
598 +* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,0,100,0,400
599 +
600 +* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,1800,100,0,400
601 +
602 +* Example 4: Downlink Payload: 070407080000000190  **~-~-->**  AT+MOD=4,0,100,0,400
603 +
604 +* Example 5: Downlink Payload: 070507080000000190  **~-~-->**  AT+MOD=5,1800,100,0,400
605 +
606 +
607 +
889 889  = 4. Battery & Power Consumption =
890 890  
891 891  
892 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
611 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
893 893  
894 894  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
895 895  
... ... @@ -898,7 +898,7 @@
898 898  
899 899  
900 900  (% class="wikigeneratedid" %)
901 -User can change firmware LDS12-LB to:
620 +User can change firmware DS20L to:
902 902  
903 903  * Change Frequency band/ region.
904 904  
... ... @@ -906,7 +906,7 @@
906 906  
907 907  * Fix bugs.
908 908  
909 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
628 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
910 910  
911 911  Methods to Update Firmware:
912 912  
... ... @@ -914,14 +914,43 @@
914 914  
915 915  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
916 916  
636 +
637 +
917 917  = 6. FAQ =
918 918  
919 -== 6.1 What is the frequency plan for LDS12-LB? ==
640 +== 6.1 What is the frequency plan for DS20L? ==
920 920  
921 921  
922 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
643 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
923 923  
924 924  
646 +== 6.2 DS20L programming line ==
647 +
648 +
649 +缺图 后续补上
650 +
651 +feature:
652 +
653 +for AT commands
654 +
655 +Update the firmware of DS20L
656 +
657 +Support interrupt mode
658 +
659 +
660 +== 6.3 LiDAR probe position ==
661 +
662 +
663 +[[image:1701155390576-216.png||height="285" width="307"]]
664 +
665 +The black oval hole in the picture is the LiDAR probe.
666 +
667 +
668 +== 6.4 Interface definition ==
669 +
670 +[[image:image-20231128151132-2.png||height="305" width="557"]]
671 +
672 +
925 925  = 7. Trouble Shooting =
926 926  
927 927  == 7.1 AT Command input doesn't work ==
... ... @@ -954,7 +954,7 @@
954 954  = 8. Order Info =
955 955  
956 956  
957 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
705 +Part Number: (% style="color:blue" %)**DS20L-XXX**
958 958  
959 959  (% style="color:red" %)**XXX**(%%): **The default frequency band**
960 960  
... ... @@ -974,12 +974,14 @@
974 974  
975 975  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976 976  
725 +
726 +
977 977  = 9. ​Packing Info =
978 978  
979 979  
980 980  (% style="color:#037691" %)**Package Includes**:
981 981  
982 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
732 +* DS20L LoRaWAN Smart Distance Detector x 1
983 983  
984 984  (% style="color:#037691" %)**Dimension and weight**:
985 985  
... ... @@ -991,6 +991,8 @@
991 991  
992 992  * Weight / pcs : g
993 993  
744 +
745 +
994 994  = 10. Support =
995 995  
996 996  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +293.9 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +70.6 KB
Content
image-20231129100454-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +70.1 KB
Content