Last modified by Mengting Qiu on 2023/12/14 11:15

From version 111.2
edited by Xiaoling
on 2023/11/10 08:54
Change comment: There is no comment for this version
To version 77.2
edited by Xiaoling
on 2023/06/13 14:01
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -DS20L -- LoRaWAN Smart Distance Detector User Manual
1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20231110085342-2.png||height="481" width="481"]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -19,24 +19,24 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
23 23  
24 24  
25 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
26 26  
27 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
28 28  
29 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
30 30  
31 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 32  
33 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 34  
35 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 36  
37 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 38  
39 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
40 40  
41 41  
42 42  == 1.2 ​Features ==
... ... @@ -45,14 +45,16 @@
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * Ultra-low power consumption
48 -* Laser technology for distance detection
49 -* Measure Distance: 0.1m~~12m
50 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 -* Monitor Battery Level
48 +* Distance Detection by Ultrasonic technology
49 +* Flat object range 30mm - 4500mm
50 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
51 +* Measure Angle: 60°
52 +* Cable Length : 25cm
52 52  * Support Bluetooth v5.1 and LoRaWAN remote configure
53 53  * Support wireless OTA update firmware
54 54  * AT Commands to change parameters
55 55  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
56 56  * 8500mAh Battery for long term use
57 57  
58 58  == 1.3 Specification ==
... ... @@ -63,23 +63,6 @@
63 63  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 -
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 -* Distance resolution : 1cm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 83  (% style="color:#037691" %)**LoRa Spec:**
84 84  
85 85  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -100,10 +100,52 @@
100 100  * Sleep Mode: 5uA @ 3.3v
101 101  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 102  
103 -== 1.4 Applications ==
88 +== 1.4 Rated environmental conditions ==
104 104  
105 105  
91 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
92 +|(% style="background-color:#d9e2f3; color:#0070c0; width:163px" %)**Item**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)(((
93 +**Minimum value**
94 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)(((
95 +**Typical value**
96 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:87px" %)(((
97 +**Maximum value**
98 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Unit**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Remarks**
99 +|(% style="width:174px" %)Storage temperature|(% style="width:86px" %)-25|(% style="width:66px" %)25|(% style="width:90px" %)80|(% style="width:48px" %)℃|(% style="width:203px" %)
100 +|(% style="width:174px" %)Storage humidity|(% style="width:86px" %) |(% style="width:66px" %)65%|(% style="width:90px" %)90%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
101 +|(% style="width:174px" %)Operating temperature|(% style="width:86px" %)-15|(% style="width:66px" %)25|(% style="width:90px" %)60|(% style="width:48px" %)℃|(% style="width:203px" %)
102 +|(% style="width:174px" %)Working humidity|(% style="width:86px" %)(((
103 +
104 +
105 +
106 +)))|(% style="width:66px" %)65%|(% style="width:90px" %)80%|(% style="width:48px" %)RH|(% style="width:203px" %)(1)
107 +
108 +(((
109 +(% style="color:red" %)**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);       **
110 +
111 +(% style="color:red" %)** b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
112 +
113 +
114 +)))
115 +
116 +== 1.5 Effective measurement range Reference beam pattern ==
117 +
118 +
119 +(% style="color:blue" %)**1. The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
120 +
121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852253176-749.png?rev=1.1||alt="1654852253176-749.png"]]
122 +
123 +
124 +(% style="color:blue" %)**2. The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
125 +
126 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654852175653-550.png?rev=1.1||alt="1654852175653-550.png"]]
127 +
128 +
129 +== 1.6 Applications ==
130 +
131 +
106 106  * Horizontal distance measurement
133 +* Liquid level measurement
107 107  * Parking management system
108 108  * Object proximity and presence detection
109 109  * Intelligent trash can management system
... ... @@ -110,18 +110,17 @@
110 110  * Robot obstacle avoidance
111 111  * Automatic control
112 112  * Sewer
140 +* Bottom water level monitoring
113 113  
114 -(% style="display:none" %)
142 +== 1.7 Sleep mode and working mode ==
115 115  
116 -== 1.5 Sleep mode and working mode ==
117 117  
118 -
119 119  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
120 120  
121 121  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122 122  
123 123  
124 -== 1.6 Button & LEDs ==
150 +== 1.8 Button & LEDs ==
125 125  
126 126  
127 127  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -128,7 +128,7 @@
128 128  
129 129  
130 130  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
157 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
132 132  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 133  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 134  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -140,11 +140,12 @@
140 140  )))
141 141  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142 142  
143 -== 1.7 BLE connection ==
169 +== 1.9 BLE connection ==
144 144  
145 145  
146 -LDS12-LB support BLE remote configure.
172 +DDS45-LB support BLE remote configure.
147 147  
174 +
148 148  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149 149  
150 150  * Press button to send an uplink
... ... @@ -154,12 +154,12 @@
154 154  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155 155  
156 156  
157 -== 1.8 Pin Definitions ==
184 +== 1.10 Pin Definitions ==
158 158  
186 +[[image:image-20230523174230-1.png]]
159 159  
160 -[[image:image-20230805144259-1.png||height="413" width="741"]]
161 161  
162 -== 1.9 Mechanical ==
189 +== 1.11 Mechanical ==
163 163  
164 164  
165 165  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -173,16 +173,15 @@
173 173  
174 174  (% style="color:blue" %)**Probe Mechanical:**
175 175  
203 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS45%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654915562090-396.png?rev=1.1||alt="1654915562090-396.png"]]
176 176  
177 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178 178  
206 += 2. Configure DDS45-LB to connect to LoRaWAN network =
179 179  
180 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
181 -
182 182  == 2.1 How it works ==
183 183  
184 184  
185 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
211 +The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
186 186  
187 187  (% style="display:none" %) (%%)
188 188  
... ... @@ -193,12 +193,12 @@
193 193  
194 194  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
195 195  
196 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
222 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
197 197  
198 198  
199 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
225 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
200 200  
201 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
227 +Each DDS45-LB is shipped with a sticker with the default device EUI as below:
202 202  
203 203  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
204 204  
... ... @@ -227,10 +227,10 @@
227 227  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
228 228  
229 229  
230 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
256 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
231 231  
232 232  
233 -Press the button for 5 seconds to activate the LDS12-LB.
259 +Press the button for 5 seconds to activate the DDS45-LB.
234 234  
235 235  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236 236  
... ... @@ -237,118 +237,74 @@
237 237  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
238 238  
239 239  
240 -== 2.3 ​Uplink Payload ==
266 +== 2.3  ​Uplink Payload ==
241 241  
242 -=== 2.3.1 Device Status, FPORT~=5 ===
243 243  
269 +(((
270 +DDS45-LB will uplink payload via LoRaWAN with below payload format: 
271 +)))
244 244  
245 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
273 +(((
274 +Uplink payload includes in total 8 bytes.
275 +)))
246 246  
247 -The Payload format is as below.
248 -
249 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
277 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
278 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
251 251  **Size(bytes)**
252 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
253 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
280 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
281 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
282 +[[Distance>>||anchor="H2.3.2A0Distance"]]
283 +(unit: mm)
284 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
285 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
286 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
254 254  
255 -Example parse in TTNv3
288 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
256 256  
257 -[[image:image-20230805103904-1.png||height="131" width="711"]]
258 258  
259 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
291 +=== 2.3.1  Battery Info ===
260 260  
261 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
262 262  
263 -(% style="color:blue" %)**Frequency Band**:
294 +Check the battery voltage for DDS45-LB.
264 264  
265 -0x01: EU868
266 -
267 -0x02: US915
268 -
269 -0x03: IN865
270 -
271 -0x04: AU915
272 -
273 -0x05: KZ865
274 -
275 -0x06: RU864
276 -
277 -0x07: AS923
278 -
279 -0x08: AS923-1
280 -
281 -0x09: AS923-2
282 -
283 -0x0a: AS923-3
284 -
285 -0x0b: CN470
286 -
287 -0x0c: EU433
288 -
289 -0x0d: KR920
290 -
291 -0x0e: MA869
292 -
293 -(% style="color:blue" %)**Sub-Band**:
294 -
295 -AU915 and US915:value 0x00 ~~ 0x08
296 -
297 -CN470: value 0x0B ~~ 0x0C
298 -
299 -Other Bands: Always 0x00
300 -
301 -(% style="color:blue" %)**Battery Info**:
302 -
303 -Check the battery voltage.
304 -
305 305  Ex1: 0x0B45 = 2885mV
306 306  
307 307  Ex2: 0x0B49 = 2889mV
308 308  
309 309  
310 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
301 +=== 2.3.2  Distance ===
311 311  
312 312  
313 313  (((
314 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
305 +Get the distance. Flat object range 30mm - 4500mm.
306 +)))
315 315  
316 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
308 +(((
309 +For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
317 317  
318 -Uplink Payload totals 11 bytes.
311 +(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
319 319  )))
320 320  
321 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
322 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 -**Size(bytes)**
324 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 -[[Message Type>>||anchor="HMessageType"]]
331 -)))
314 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
315 +* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
332 332  
333 -[[image:image-20230805104104-2.png||height="136" width="754"]]
317 +=== 2.3.3  Interrupt Pin ===
334 334  
335 335  
336 -==== (% style="color:blue" %)**Battery Info**(%%) ====
320 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
337 337  
322 +**Example:**
338 338  
339 -Check the battery voltage for LDS12-LB.
324 +0x00: Normal uplink packet.
340 340  
341 -Ex1: 0x0B45 = 2885mV
326 +0x01: Interrupt Uplink Packet.
342 342  
343 -Ex2: 0x0B49 = 2889mV
344 344  
329 +=== 2.3.4  DS18B20 Temperature sensor ===
345 345  
346 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
347 347  
348 -
349 349  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
350 350  
351 -
352 352  **Example**:
353 353  
354 354  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -356,191 +356,42 @@
356 356  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
357 357  
358 358  
359 -==== (% style="color:blue" %)**Distance**(%%) ====
341 +=== 2.3.5  Sensor Flag ===
360 360  
361 361  
362 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363 -
364 -
365 -**Example**:
366 -
367 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
368 -
369 -
370 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
371 -
372 -
373 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
374 -
375 -
376 -**Example**:
377 -
378 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
379 -
380 -Customers can judge whether they need to adjust the environment based on the signal strength.
381 -
382 -
383 -**1) When the sensor detects valid data:**
384 -
385 -[[image:image-20230805155335-1.png||height="145" width="724"]]
386 -
387 -
388 -**2) When the sensor detects invalid data:**
389 -
390 -[[image:image-20230805155428-2.png||height="139" width="726"]]
391 -
392 -
393 -**3) When the sensor is not connected:**
394 -
395 -[[image:image-20230805155515-3.png||height="143" width="725"]]
396 -
397 -
398 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
399 -
400 -
401 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
402 -
403 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
404 -
405 -**Example:**
406 -
407 -If byte[0]&0x01=0x00 : Normal uplink packet.
408 -
409 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
410 -
411 -
412 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
413 -
414 -
415 -Characterize the internal temperature value of the sensor.
416 -
417 -**Example: **
418 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
420 -
421 -
422 -==== (% style="color:blue" %)**Message Type**(%%) ====
423 -
424 -
425 425  (((
426 -For a normal uplink payload, the message type is always 0x01.
345 +0x01: Detect Ultrasonic Sensor
427 427  )))
428 428  
429 429  (((
430 -Valid Message Type:
349 +0x00: No Ultrasonic Sensor
431 431  )))
432 432  
433 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
437 437  
438 -[[image:image-20230805150315-4.png||height="233" width="723"]]
353 +=== 2.3.6  Decode payload in The Things Network ===
439 439  
440 440  
441 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
356 +While using TTN network, you can add the payload format to decode the payload.
442 442  
358 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
443 443  
444 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
360 +The payload decoder function for TTN V3 is here:
445 445  
446 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
447 -
448 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
449 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 -**Size(bytes)**
451 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
452 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 -Reserve(0xFF)
454 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 -LiDAR temp
456 -)))|(% style="width:85px" %)Unix TimeStamp
457 -
458 -**Interrupt flag & Interrupt level:**
459 -
460 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
461 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 -**Size(bit)**
463 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
464 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 -Interrupt flag
362 +(((
363 +DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
466 466  )))
467 467  
468 -* (((
469 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
470 -)))
471 471  
472 -For example, in the US915 band, the max payload for different DR is:
367 +== 2.4  Uplink Interval ==
473 473  
474 -**a) DR0:** max is 11 bytes so one entry of data
475 475  
476 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
370 +The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
477 477  
478 -**c) DR2:** total payload includes 11 entries of data
479 479  
480 -**d) DR3:** total payload includes 22 entries of data.
373 +== 2.5  ​Show Data in DataCake IoT Server ==
481 481  
482 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
483 483  
484 -
485 -**Downlink:**
486 -
487 -0x31 64 CC 68 0C 64 CC 69 74 05
488 -
489 -[[image:image-20230805144936-2.png||height="113" width="746"]]
490 -
491 -**Uplink:**
492 -
493 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
494 -
495 -
496 -**Parsed Value:**
497 -
498 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
499 -
500 -
501 -[360,176,30,High,True,2023-08-04 02:53:00],
502 -
503 -[355,168,30,Low,False,2023-08-04 02:53:29],
504 -
505 -[245,211,30,Low,False,2023-08-04 02:54:29],
506 -
507 -[57,700,30,Low,False,2023-08-04 02:55:29],
508 -
509 -[361,164,30,Low,True,2023-08-04 02:56:00],
510 -
511 -[337,184,30,Low,False,2023-08-04 02:56:40],
512 -
513 -[20,4458,30,Low,False,2023-08-04 02:57:40],
514 -
515 -[362,173,30,Low,False,2023-08-04 02:58:53],
516 -
517 -
518 -**History read from serial port:**
519 -
520 -[[image:image-20230805145056-3.png]]
521 -
522 -
523 -=== 2.3.4 Decode payload in The Things Network ===
524 -
525 -
526 -While using TTN network, you can add the payload format to decode the payload.
527 -
528 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
529 -
530 -
531 531  (((
532 -The payload decoder function for TTN is here:
533 -)))
534 -
535 -(((
536 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
537 -)))
538 -
539 -
540 -== 2.4 ​Show Data in DataCake IoT Server ==
541 -
542 -
543 -(((
544 544  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
545 545  )))
546 546  
... ... @@ -562,7 +562,7 @@
562 562  
563 563  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
564 564  
565 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
398 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
566 566  
567 567  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
568 568  
... ... @@ -572,22 +572,23 @@
572 572  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
573 573  
574 574  
575 -== 2.5 Datalog Feature ==
576 576  
409 +== 2.6 Datalog Feature ==
577 577  
578 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
579 579  
412 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
580 580  
581 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
582 582  
415 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
583 583  
584 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
585 585  
418 +Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
419 +
586 586  * (((
587 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
421 +a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
588 588  )))
589 589  * (((
590 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
424 +b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
591 591  )))
592 592  
593 593  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -595,10 +595,10 @@
595 595  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596 596  
597 597  
598 -=== 2.5.2 Unix TimeStamp ===
432 +=== 2.6.2 Unix TimeStamp ===
599 599  
600 600  
601 -LDS12-LB uses Unix TimeStamp format based on
435 +DDS45-LB uses Unix TimeStamp format based on
602 602  
603 603  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604 604  
... ... @@ -612,23 +612,23 @@
612 612  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613 613  
614 614  
615 -=== 2.5.3 Set Device Time ===
449 +=== 2.6.3 Set Device Time ===
616 616  
617 617  
618 618  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619 619  
620 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
454 +Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
621 621  
622 622  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623 623  
624 624  
625 -=== 2.5.4 Poll sensor value ===
459 +=== 2.6.4 Poll sensor value ===
626 626  
627 627  
628 628  Users can poll sensor values based on timestamps. Below is the downlink command.
629 629  
630 630  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
465 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 632  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 633  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634 634  
... ... @@ -645,108 +645,24 @@
645 645  )))
646 646  
647 647  (((
648 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
482 +Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
649 649  )))
650 650  
651 651  
652 -== 2.6 Frequency Plans ==
486 +== 2.7 Frequency Plans ==
653 653  
654 654  
655 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
489 +The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
656 656  
657 657  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
658 658  
659 659  
660 -== 2.7 LiDAR ToF Measurement ==
494 += 3. Configure DDS45-LB =
661 661  
662 -=== 2.7.1 Principle of Distance Measurement ===
663 -
664 -
665 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666 -
667 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
668 -
669 -
670 -=== 2.7.2 Distance Measurement Characteristics ===
671 -
672 -
673 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674 -
675 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
676 -
677 -
678 -(((
679 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 -)))
681 -
682 -(((
683 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 -)))
685 -
686 -(((
687 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 -)))
689 -
690 -
691 -(((
692 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 -)))
694 -
695 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696 -
697 -(((
698 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 -)))
700 -
701 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702 -
703 -(((
704 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 -)))
706 -
707 -
708 -=== 2.7.3 Notice of usage ===
709 -
710 -
711 -Possible invalid /wrong reading for LiDAR ToF tech:
712 -
713 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717 -
718 -=== 2.7.4  Reflectivity of different objects ===
719 -
720 -
721 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
738 -Unpolished white metal surface
739 -)))|(% style="width:93px" %)130%
740 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743 -
744 -= 3. Configure LDS12-LB =
745 -
746 746  == 3.1 Configure Methods ==
747 747  
748 748  
749 -LDS12-LB supports below configure method:
499 +DDS45-LB supports below configure method:
750 750  
751 751  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
752 752  
... ... @@ -768,10 +768,10 @@
768 768  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
769 769  
770 770  
771 -== 3.3 Commands special design for LDS12-LB ==
521 +== 3.3 Commands special design for DDS45-LB ==
772 772  
773 773  
774 -These commands only valid for LDS12-LB, as below:
524 +These commands only valid for DDS45-LB, as below:
775 775  
776 776  
777 777  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -786,7 +786,7 @@
786 786  )))
787 787  
788 788  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
789 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
539 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
790 790  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
791 791  30000
792 792  OK
... ... @@ -814,32 +814,25 @@
814 814  )))
815 815  * (((
816 816  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
817 -
818 -
819 -
820 820  )))
821 821  
822 822  === 3.3.2 Set Interrupt Mode ===
823 823  
824 824  
825 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
572 +Feature, Set Interrupt mode for PA8 of pin.
826 826  
827 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
574 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
828 828  
829 829  (% style="color:blue" %)**AT Command: AT+INTMOD**
830 830  
831 831  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
832 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
579 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
833 833  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
834 834  0
835 835  OK
836 836  the mode is 0 =Disable Interrupt
837 837  )))
838 -|(% style="width:154px" %)(((
839 -AT+INTMOD=2
840 -
841 -(default)
842 -)))|(% style="width:196px" %)(((
585 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
843 843  Set Transmit Interval
844 844  0. (Disable Interrupt),
845 845  ~1. (Trigger by rising and falling edge)
... ... @@ -857,39 +857,10 @@
857 857  
858 858  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
859 859  
860 -=== 3.3.3  Set Power Output Duration ===
861 -
862 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
863 -
864 -~1. first enable the power output to external sensor,
865 -
866 -2. keep it on as per duration, read sensor value and construct uplink payload
867 -
868 -3. final, close the power output.
869 -
870 -(% style="color:blue" %)**AT Command: AT+3V3T**
871 -
872 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
873 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
875 -OK
876 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
879 -
880 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 -Format: Command Code (0x07) followed by 3 bytes.
882 -
883 -The first byte is 01,the second and third bytes are the time to turn on.
884 -
885 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
888 -
889 889  = 4. Battery & Power Consumption =
890 890  
891 891  
892 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
606 +DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
893 893  
894 894  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
895 895  
... ... @@ -898,7 +898,7 @@
898 898  
899 899  
900 900  (% class="wikigeneratedid" %)
901 -User can change firmware LDS12-LB to:
615 +User can change firmware DDS45-LB to:
902 902  
903 903  * Change Frequency band/ region.
904 904  
... ... @@ -906,55 +906,77 @@
906 906  
907 907  * Fix bugs.
908 908  
909 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
623 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
910 910  
911 911  Methods to Update Firmware:
912 912  
913 -* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
627 +* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
914 914  
915 915  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
916 916  
917 917  = 6. FAQ =
918 918  
919 -== 6.1 What is the frequency plan for LDS12-LB? ==
633 +== 6.1  What is the frequency plan for DDS45-LB? ==
920 920  
921 921  
922 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
636 +DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
923 923  
924 924  
925 -= 7Trouble Shooting =
639 +== 6.2  Can I use DDS45-LB in condensation environment? ==
926 926  
927 -== 7.1 AT Command input doesn't work ==
928 928  
642 +DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
929 929  
644 +
645 += 7.  Trouble Shooting =
646 +
647 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
648 +
649 +
650 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
651 +
652 +
653 +== 7.2  AT Command input doesn't work ==
654 +
655 +
930 930  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
931 931  
932 932  
933 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
659 +== 7.3  Why does the sensor reading show 0 or "No sensor" ==
934 934  
935 935  
936 -(((
937 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
938 -)))
662 +~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
939 939  
940 -(((
941 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
942 -)))
664 +2. Sensor wiring is disconnected
943 943  
666 +3. Not using the correct decoder
944 944  
945 -(((
946 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
947 -)))
948 948  
949 -(((
950 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
951 -)))
669 +== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
952 952  
953 953  
672 +1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
673 +
674 +2) Does it change with temperature, temperature will affect its measurement
675 +
676 +3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
677 +
678 +downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
679 +
680 +4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
681 +
682 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
683 +
684 +
685 +Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
686 +
687 +Please send the data to us for check.
688 +
689 +
954 954  = 8. Order Info =
955 955  
956 956  
957 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
693 +Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
958 958  
959 959  (% style="color:red" %)**XXX**(%%): **The default frequency band**
960 960  
... ... @@ -979,7 +979,7 @@
979 979  
980 980  (% style="color:#037691" %)**Package Includes**:
981 981  
982 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
718 +* DDS45-LB LoRaWAN Distance Detection Sensor x 1
983 983  
984 984  (% style="color:#037691" %)**Dimension and weight**:
985 985  
image-20230613143052-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -21.8 KB
Content
image-20230613143125-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -24.7 KB
Content
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -178.7 KB
Content