Last modified by Mengting Qiu on 2023/12/14 11:15

From version 111.1
edited by Xiaoling
on 2023/11/10 08:53
Change comment: Uploaded new attachment "image-20231110085342-2.png", version {1}
To version 118.4
edited by Xiaoling
on 2023/11/28 14:04
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,170 +18,66 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m
49 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
53 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
55 +* Operation Temperature: -40 ~~ 80 °C
56 +* Operation Humidity: 0~~99.9%RH (no Dew)
57 +* Storage Temperature: -10 ~~ 45°C
58 +* Measure Range: 3cm~~200cm @ 90% reflectivity
59 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
60 +* ToF FoV: ±9°, Total 18°
61 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
63 +== 1.4 Power Consumption ==
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
73 -* Distance resolution : 1cm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 81  
82 -(% style="color:#037691" %)**LoRa Spec:**
66 +(% style="color:#037691" %)**Battery Power Mode:**
83 83  
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
68 +* Idle: 0.003 mA @ 3.3v
69 +* Max : 360 mA
88 88  
89 -(% style="color:#037691" %)**Battery:**
71 +(% style="color:#037691" %)**Continuously mode**:
90 90  
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
73 +* Idle: 21 mA @ 3.3v
74 +* Max : 360 mA
96 96  
97 -(% style="color:#037691" %)**Power Consumption**
76 += 2. Configure DS20L to connect to LoRaWAN network =
98 98  
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 -
102 -== 1.4 Applications ==
103 -
104 -
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 -
113 -(% style="display:none" %)
114 -
115 -== 1.5 Sleep mode and working mode ==
116 -
117 -
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 -
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 -
122 -
123 -== 1.6 Button & LEDs ==
124 -
125 -
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 -
128 -
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 -
142 -== 1.7 BLE connection ==
143 -
144 -
145 -LDS12-LB support BLE remote configure.
146 -
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 -
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
152 -
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 -
155 -
156 -== 1.8 Pin Definitions ==
157 -
158 -
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 -
161 -== 1.9 Mechanical ==
162 -
163 -
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165 -
166 -
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 -
169 -
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 -
172 -
173 -(% style="color:blue" %)**Probe Mechanical:**
174 -
175 -
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 -
178 -
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 -
181 181  == 2.1 How it works ==
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
81 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 185  
186 186  (% style="display:none" %) (%%)
187 187  
... ... @@ -190,15 +190,14 @@
190 190  
191 191  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192 192  
193 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
90 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
92 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
196 196  
94 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
96 +Each DS20L is shipped with a sticker with the default device EUI as below:
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201 -
202 202  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
204 204  
... ... @@ -226,10 +226,11 @@
226 226  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
125 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
230 230  
127 +[[image:image-20231128133704-1.png||height="189" width="441"]]
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
129 +Press the button for 5 seconds to activate the DS20L.
233 233  
234 234  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
... ... @@ -241,7 +241,7 @@
241 241  === 2.3.1 Device Status, FPORT~=5 ===
242 242  
243 243  
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
141 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
245 245  
246 246  The Payload format is as below.
247 247  
... ... @@ -253,9 +253,9 @@
253 253  
254 254  Example parse in TTNv3
255 255  
256 -[[image:image-20230805103904-1.png||height="131" width="711"]]
153 +[[image:1701149922873-259.png]]
257 257  
258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
155 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
259 259  
260 260  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261 261  
... ... @@ -310,7 +310,7 @@
310 310  
311 311  
312 312  (((
313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
210 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
314 314  
315 315  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
316 316  
... ... @@ -335,7 +335,7 @@
335 335  ==== (% style="color:blue" %)**Battery Info**(%%) ====
336 336  
337 337  
338 -Check the battery voltage for LDS12-LB.
235 +Check the battery voltage for DS20L.
339 339  
340 340  Ex1: 0x0B45 = 2885mV
341 341  
... ... @@ -399,7 +399,7 @@
399 399  
400 400  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
401 401  
402 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
299 +Note: The Internet Pin is a separate pin in the screw terminal. See pin mapping of GPIO_EXTI .
403 403  
404 404  **Example:**
405 405  
... ... @@ -440,7 +440,7 @@
440 440  === 2.3.3 Historical measuring distance, FPORT~=3 ===
441 441  
442 442  
443 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
340 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
444 444  
445 445  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
446 446  
... ... @@ -465,7 +465,7 @@
465 465  )))
466 466  
467 467  * (((
468 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
365 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
469 469  )))
470 470  
471 471  For example, in the US915 band, the max payload for different DR is:
... ... @@ -478,7 +478,7 @@
478 478  
479 479  **d) DR3:** total payload includes 22 entries of data.
480 480  
481 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
378 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
482 482  
483 483  
484 484  **Downlink:**
... ... @@ -532,7 +532,7 @@
532 532  )))
533 533  
534 534  (((
535 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
432 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
536 536  )))
537 537  
538 538  
... ... @@ -561,7 +561,7 @@
561 561  
562 562  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
563 563  
564 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
461 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
565 565  
566 566  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
567 567  
... ... @@ -571,181 +571,20 @@
571 571  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
572 572  
573 573  
574 -== 2.5 Datalog Feature ==
471 +== 2.5 Frequency Plans ==
575 575  
576 576  
577 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
474 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
578 578  
579 -
580 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
581 -
582 -
583 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
584 -
585 -* (((
586 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
587 -)))
588 -* (((
589 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
590 -)))
591 -
592 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
593 -
594 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
595 -
596 -
597 -=== 2.5.2 Unix TimeStamp ===
598 -
599 -
600 -LDS12-LB uses Unix TimeStamp format based on
601 -
602 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
603 -
604 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
605 -
606 -Below is the converter example
607 -
608 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
609 -
610 -
611 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
612 -
613 -
614 -=== 2.5.3 Set Device Time ===
615 -
616 -
617 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
618 -
619 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
620 -
621 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
622 -
623 -
624 -=== 2.5.4 Poll sensor value ===
625 -
626 -
627 -Users can poll sensor values based on timestamps. Below is the downlink command.
628 -
629 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
630 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
631 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
632 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
633 -
634 -(((
635 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
636 -)))
637 -
638 -(((
639 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
640 -)))
641 -
642 -(((
643 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
644 -)))
645 -
646 -(((
647 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
648 -)))
649 -
650 -
651 -== 2.6 Frequency Plans ==
652 -
653 -
654 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
655 -
656 656  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
657 657  
658 658  
659 -== 2.7 LiDAR ToF Measurement ==
479 += 3. Configure DS20L =
660 660  
661 -=== 2.7.1 Principle of Distance Measurement ===
662 -
663 -
664 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
665 -
666 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
667 -
668 -
669 -=== 2.7.2 Distance Measurement Characteristics ===
670 -
671 -
672 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
673 -
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
675 -
676 -
677 -(((
678 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
679 -)))
680 -
681 -(((
682 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
683 -)))
684 -
685 -(((
686 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
687 -)))
688 -
689 -
690 -(((
691 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
692 -)))
693 -
694 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
695 -
696 -(((
697 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
698 -)))
699 -
700 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
701 -
702 -(((
703 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
704 -)))
705 -
706 -
707 -=== 2.7.3 Notice of usage ===
708 -
709 -
710 -Possible invalid /wrong reading for LiDAR ToF tech:
711 -
712 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
713 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
714 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
715 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
716 -
717 -=== 2.7.4  Reflectivity of different objects ===
718 -
719 -
720 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
721 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
722 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
723 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
724 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
725 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
726 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
727 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
728 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
729 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
730 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
731 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
732 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
733 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
734 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
735 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
736 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
737 -Unpolished white metal surface
738 -)))|(% style="width:93px" %)130%
739 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
740 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
741 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
742 -
743 -= 3. Configure LDS12-LB =
744 -
745 745  == 3.1 Configure Methods ==
746 746  
747 747  
748 -LDS12-LB supports below configure method:
484 +DS20L supports below configure method:
749 749  
750 750  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
751 751  
... ... @@ -767,10 +767,10 @@
767 767  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
768 768  
769 769  
770 -== 3.3 Commands special design for LDS12-LB ==
506 +== 3.3 Commands special design for DS20L ==
771 771  
772 772  
773 -These commands only valid for LDS12-LB, as below:
509 +These commands only valid for DS20L, as below:
774 774  
775 775  
776 776  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -812,12 +812,10 @@
812 812  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
813 813  )))
814 814  * (((
815 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
816 -
817 -
818 -
551 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
819 819  )))
820 820  
554 +
821 821  === 3.3.2 Set Interrupt Mode ===
822 822  
823 823  
... ... @@ -835,7 +835,7 @@
835 835  the mode is 0 =Disable Interrupt
836 836  )))
837 837  |(% style="width:154px" %)(((
838 -AT+INTMOD=2
572 +AT+INTMOD=3
839 839  
840 840  (default)
841 841  )))|(% style="width:196px" %)(((
... ... @@ -856,39 +856,82 @@
856 856  
857 857  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
858 858  
859 -=== 3.3.3  Set Power Output Duration ===
860 860  
861 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
862 862  
863 -~1. first enable the power output to external sensor,
595 +== 3.3.3 Set work mode ==
864 864  
865 -2. keep it on as per duration, read sensor value and construct uplink payload
866 866  
867 -3. final, close the power output.
598 +Feature: Switch working mode
868 868  
869 -(% style="color:blue" %)**AT Command: AT+3V3T**
600 +(% style="color:blue" %)**AT Command: AT+MOD**
870 870  
871 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
872 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
873 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
602 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
603 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 108px;background-color:#4F81BD;color:white" %)**Response**
604 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
605 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
874 874  OK
875 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
876 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
877 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 878  
879 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
880 -Format: Command Code (0x07) followed by 3 bytes.
608 +Attention:Take effect after ATZ
609 +)))
881 881  
882 -The first byte is 01,the second and third bytes are the time to turn on.
611 +(% style="color:blue" %)**Downlink Command:**
883 883  
884 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
885 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
886 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
613 +* **Example: **0x0A00  ~/~/  Same as AT+MOD=0
887 887  
615 +* **Example:** 0x0A01  ~/~/  Same as AT+MOD=1
616 +
617 +
618 +=== 3.3.4 Set threshold and threshold mode ===
619 +
620 +
621 +Feature, Set threshold and threshold mode
622 +
623 +When **AT+DOL=0,0,0,0,400** is set, No threshold is used, the sampling time is 400ms.
624 +
625 +(% style="color:blue" %)**AT Command: AT+DOL**
626 +
627 +(% border="1" cellspacing="4" style="width:571.818px" %)
628 +|(% style="width:172px;background-color:#4F81BD;color:white" %)**Command Example**|(% style="width:279px;background-color:#4F81BD;color:white" %)**Function**|(% style="width:118px;background-color:#4F81BD;color:white" %)**Response**
629 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
630 +0,0,0,0,400
631 +
632 +OK
633 +)))
634 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
635 +
636 +
637 +(% border="1" cellspacing="4" style="width:668.818px" %)
638 +|(% rowspan="11" style="width:166px" %)**AT+DOL=5,1800,0,0,400**|(% rowspan="6" style="width:226px" %)The first bit sets the limit mode|(% style="width:251px" %)0:Do not use upper and lower limits
639 +|(% style="width:251px" %)1:Use upper and lower limits
640 +|(% style="width:251px" %)2:Less than the lower limit
641 +|(% style="width:251px" %)3:Greater than the lower limit
642 +|(% style="width:251px" %)4:Less than the upper limit
643 +|(% style="width:251px" %)5: Greater than the upper limit
644 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
645 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
646 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
647 +|(% style="width:251px" %)1 Person or object counting statistics
648 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
649 +0~~10000ms
650 +
651 +
652 +)))
653 +
654 +(% style="color:blue" %)**Downlink Command: 0x07**
655 +
656 +Format: Command Code (0x07) followed by 9bytes.
657 +
658 +* Example 0: Downlink Payload: 070000000000000190  **~-~-->**  AT+MOD=0,0,0,0,400
659 +
660 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
661 +
662 +
663 +
664 +
888 888  = 4. Battery & Power Consumption =
889 889  
890 890  
891 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
668 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
892 892  
893 893  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
894 894  
... ... @@ -897,7 +897,7 @@
897 897  
898 898  
899 899  (% class="wikigeneratedid" %)
900 -User can change firmware LDS12-LB to:
677 +User can change firmware DS20L to:
901 901  
902 902  * Change Frequency band/ region.
903 903  
... ... @@ -905,7 +905,7 @@
905 905  
906 906  * Fix bugs.
907 907  
908 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
685 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
909 909  
910 910  Methods to Update Firmware:
911 911  
... ... @@ -915,10 +915,10 @@
915 915  
916 916  = 6. FAQ =
917 917  
918 -== 6.1 What is the frequency plan for LDS12-LB? ==
695 +== 6.1 What is the frequency plan for DS20L? ==
919 919  
920 920  
921 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
698 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
922 922  
923 923  
924 924  = 7. Trouble Shooting =
... ... @@ -953,7 +953,7 @@
953 953  = 8. Order Info =
954 954  
955 955  
956 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
733 +Part Number: (% style="color:blue" %)**DS20L-XXX**
957 957  
958 958  (% style="color:red" %)**XXX**(%%): **The default frequency band**
959 959  
... ... @@ -978,7 +978,7 @@
978 978  
979 979  (% style="color:#037691" %)**Package Includes**:
980 980  
981 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
758 +* DS20L LoRaWAN Smart Distance Detector x 1
982 982  
983 983  (% style="color:#037691" %)**Dimension and weight**:
984 984  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content