Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.3
edited by Xiaoling
on 2023/08/07 09:21
Change comment: There is no comment for this version
To version 82.20
edited by Xiaoling
on 2023/06/14 17:35
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -127,7 +127,7 @@
127 127  
128 128  
129 129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
130 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 131  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 132  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 133  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -155,9 +155,10 @@
155 155  
156 156  == 1.8 Pin Definitions ==
157 157  
158 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
158 158  
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 160  
161 +
161 161  == 1.9 Mechanical ==
162 162  
163 163  
... ... @@ -173,6 +173,7 @@
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
175 175  
177 +
176 176  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
178 178  
... ... @@ -192,7 +192,7 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
197 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
196 196  
197 197  
198 198  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -238,101 +238,31 @@
238 238  
239 239  == 2.3 ​Uplink Payload ==
240 240  
241 -=== 2.3.1 Device Status, FPORT~=5 ===
242 242  
243 -
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245 -
246 -The Payload format is as below.
247 -
248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 -**Size(bytes)**
251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253 -
254 -Example parse in TTNv3
255 -
256 -[[image:image-20230805103904-1.png||height="131" width="711"]]
257 -
258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
259 -
260 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261 -
262 -(% style="color:blue" %)**Frequency Band**:
263 -
264 -0x01: EU868
265 -
266 -0x02: US915
267 -
268 -0x03: IN865
269 -
270 -0x04: AU915
271 -
272 -0x05: KZ865
273 -
274 -0x06: RU864
275 -
276 -0x07: AS923
277 -
278 -0x08: AS923-1
279 -
280 -0x09: AS923-2
281 -
282 -0x0a: AS923-3
283 -
284 -0x0b: CN470
285 -
286 -0x0c: EU433
287 -
288 -0x0d: KR920
289 -
290 -0x0e: MA869
291 -
292 -(% style="color:blue" %)**Sub-Band**:
293 -
294 -AU915 and US915:value 0x00 ~~ 0x08
295 -
296 -CN470: value 0x0B ~~ 0x0C
297 -
298 -Other Bands: Always 0x00
299 -
300 -(% style="color:blue" %)**Battery Info**:
301 -
302 -Check the battery voltage.
303 -
304 -Ex1: 0x0B45 = 2885mV
305 -
306 -Ex2: 0x0B49 = 2889mV
307 -
308 -
309 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
310 -
311 -
312 312  (((
313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
245 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
246 +)))
314 314  
315 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
316 -
317 -Uplink Payload totals 11 bytes.
248 +(((
249 +Uplink payload includes in total 11 bytes.
318 318  )))
319 319  
320 320  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
253 +|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
322 322  **Size(bytes)**
323 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
324 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
327 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 -[[Message Type>>||anchor="HMessageType"]]
255 +)))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
256 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
257 +[[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
258 +)))|[[Distance>>||anchor="H2.3.3Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
259 +[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
260 +)))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
261 +[[Message Type>>||anchor="H2.3.7MessageType"]]
330 330  )))
331 331  
332 -[[image:image-20230805104104-2.png||height="136" width="754"]]
264 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
333 333  
334 334  
335 -==== (% style="color:blue" %)**Battery Info**(%%) ====
267 +=== 2.3.1 Battery Info ===
336 336  
337 337  
338 338  Check the battery voltage for LDS12-LB.
... ... @@ -342,7 +342,7 @@
342 342  Ex2: 0x0B49 = 2889mV
343 343  
344 344  
345 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
277 +=== 2.3.2 DS18B20 Temperature sensor ===
346 346  
347 347  
348 348  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
... ... @@ -355,7 +355,7 @@
355 355  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
356 356  
357 357  
358 -==== (% style="color:blue" %)**Distance**(%%) ====
290 +=== 2.3.3 Distance ===
359 359  
360 360  
361 361  Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
... ... @@ -366,7 +366,7 @@
366 366  If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
367 367  
368 368  
369 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
301 +=== 2.3.4 Distance signal strength ===
370 370  
371 371  
372 372  Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
... ... @@ -379,36 +379,21 @@
379 379  Customers can judge whether they need to adjust the environment based on the signal strength.
380 380  
381 381  
382 -**1) When the sensor detects valid data:**
314 +=== 2.3.5 Interrupt Pin ===
383 383  
384 -[[image:image-20230805155335-1.png||height="145" width="724"]]
385 385  
386 -
387 -**2) When the sensor detects invalid data:**
388 -
389 -[[image:image-20230805155428-2.png||height="139" width="726"]]
390 -
391 -
392 -**3) When the sensor is not connected:**
393 -
394 -[[image:image-20230805155515-3.png||height="143" width="725"]]
395 -
396 -
397 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
398 -
399 -
400 400  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
401 401  
402 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
319 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
403 403  
404 404  **Example:**
405 405  
406 -If byte[0]&0x01=0x00 : Normal uplink packet.
323 +0x00: Normal uplink packet.
407 407  
408 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
325 +0x01: Interrupt Uplink Packet.
409 409  
410 410  
411 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
328 +=== 2.3.6 LiDAR temp ===
412 412  
413 413  
414 414  Characterize the internal temperature value of the sensor.
... ... @@ -418,7 +418,7 @@
418 418  If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
419 419  
420 420  
421 -==== (% style="color:blue" %)**Message Type**(%%) ====
338 +=== 2.3.7 Message Type ===
422 422  
423 423  
424 424  (((
... ... @@ -431,97 +431,13 @@
431 431  
432 432  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
433 433  |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
434 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
435 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
351 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
352 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
436 436  
437 -[[image:image-20230805150315-4.png||height="233" width="723"]]
438 438  
355 +=== 2.3.8 Decode payload in The Things Network ===
439 439  
440 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
441 441  
442 -
443 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
444 -
445 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
446 -
447 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
448 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
449 -**Size(bytes)**
450 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
451 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
452 -Reserve(0xFF)
453 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
454 -LiDAR temp
455 -)))|(% style="width:85px" %)Unix TimeStamp
456 -
457 -**Interrupt flag & Interrupt level:**
458 -
459 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
460 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
461 -**Size(bit)**
462 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
463 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
464 -Interrupt flag
465 -)))
466 -
467 -* (((
468 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
469 -)))
470 -
471 -For example, in the US915 band, the max payload for different DR is:
472 -
473 -**a) DR0:** max is 11 bytes so one entry of data
474 -
475 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
476 -
477 -**c) DR2:** total payload includes 11 entries of data
478 -
479 -**d) DR3:** total payload includes 22 entries of data.
480 -
481 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
482 -
483 -
484 -**Downlink:**
485 -
486 -0x31 64 CC 68 0C 64 CC 69 74 05
487 -
488 -[[image:image-20230805144936-2.png||height="113" width="746"]]
489 -
490 -**Uplink:**
491 -
492 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
493 -
494 -
495 -**Parsed Value:**
496 -
497 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
498 -
499 -
500 -[360,176,30,High,True,2023-08-04 02:53:00],
501 -
502 -[355,168,30,Low,False,2023-08-04 02:53:29],
503 -
504 -[245,211,30,Low,False,2023-08-04 02:54:29],
505 -
506 -[57,700,30,Low,False,2023-08-04 02:55:29],
507 -
508 -[361,164,30,Low,True,2023-08-04 02:56:00],
509 -
510 -[337,184,30,Low,False,2023-08-04 02:56:40],
511 -
512 -[20,4458,30,Low,False,2023-08-04 02:57:40],
513 -
514 -[362,173,30,Low,False,2023-08-04 02:58:53],
515 -
516 -
517 -**History read from serial port:**
518 -
519 -[[image:image-20230805145056-3.png]]
520 -
521 -
522 -=== 2.3.4 Decode payload in The Things Network ===
523 -
524 -
525 525  While using TTN network, you can add the payload format to decode the payload.
526 526  
527 527  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
... ... @@ -536,9 +536,15 @@
536 536  )))
537 537  
538 538  
539 -== 2.4 ​Show Data in DataCake IoT Server ==
372 +== 2.4 Uplink Interval ==
540 540  
541 541  
375 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
376 +
377 +
378 +== 2.5 ​Show Data in DataCake IoT Server ==
379 +
380 +
542 542  (((
543 543  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
544 544  )))
... ... @@ -571,13 +571,13 @@
571 571  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
572 572  
573 573  
574 -== 2.5 Datalog Feature ==
413 +== 2.6 Datalog Feature ==
575 575  
576 576  
577 577  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
578 578  
579 579  
580 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
419 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
581 581  
582 582  
583 583  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -594,7 +594,7 @@
594 594  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
595 595  
596 596  
597 -=== 2.5.2 Unix TimeStamp ===
436 +=== 2.6.2 Unix TimeStamp ===
598 598  
599 599  
600 600  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -611,7 +611,7 @@
611 611  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
612 612  
613 613  
614 -=== 2.5.3 Set Device Time ===
453 +=== 2.6.3 Set Device Time ===
615 615  
616 616  
617 617  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -621,13 +621,13 @@
621 621  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
622 622  
623 623  
624 -=== 2.5.4 Poll sensor value ===
463 +=== 2.6.4 Poll sensor value ===
625 625  
626 626  
627 627  Users can poll sensor values based on timestamps. Below is the downlink command.
628 628  
629 629  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
630 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
469 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
631 631  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
632 632  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
633 633  
... ... @@ -648,7 +648,7 @@
648 648  )))
649 649  
650 650  
651 -== 2.6 Frequency Plans ==
490 +== 2.7 Frequency Plans ==
652 652  
653 653  
654 654  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -656,9 +656,9 @@
656 656  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
657 657  
658 658  
659 -== 2.7 LiDAR ToF Measurement ==
498 +== 2.8 LiDAR ToF Measurement ==
660 660  
661 -=== 2.7.1 Principle of Distance Measurement ===
500 +=== 2.8.1 Principle of Distance Measurement ===
662 662  
663 663  
664 664  The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
... ... @@ -666,7 +666,7 @@
666 666  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
667 667  
668 668  
669 -=== 2.7.2 Distance Measurement Characteristics ===
508 +=== 2.8.2 Distance Measurement Characteristics ===
670 670  
671 671  
672 672  With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
... ... @@ -691,8 +691,10 @@
691 691  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
692 692  )))
693 693  
533 +
694 694  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
695 695  
536 +
696 696  (((
697 697  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
698 698  )))
... ... @@ -704,7 +704,7 @@
704 704  )))
705 705  
706 706  
707 -=== 2.7.3 Notice of usage ===
548 +=== 2.8.3 Notice of usage ===
708 708  
709 709  
710 710  Possible invalid /wrong reading for LiDAR ToF tech:
... ... @@ -714,9 +714,12 @@
714 714  * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
715 715  * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
716 716  
717 -=== 2.7.4  Reflectivity of different objects ===
718 718  
719 719  
560 +
561 +=== 2.8.4  Reflectivity of different objects ===
562 +
563 +
720 720  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
721 721  |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
722 722  |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
... ... @@ -740,6 +740,9 @@
740 740  |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
741 741  |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
742 742  
587 +
588 +
589 +
743 743  = 3. Configure LDS12-LB =
744 744  
745 745  == 3.1 Configure Methods ==
... ... @@ -753,6 +753,9 @@
753 753  
754 754  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
755 755  
603 +
604 +
605 +
756 756  == 3.2 General Commands ==
757 757  
758 758  
... ... @@ -813,17 +813,14 @@
813 813  )))
814 814  * (((
815 815  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
816 -
817 -
818 -
819 819  )))
820 820  
821 821  === 3.3.2 Set Interrupt Mode ===
822 822  
823 823  
824 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
671 +Feature, Set Interrupt mode for PA8 of pin.
825 825  
826 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
673 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
827 827  
828 828  (% style="color:blue" %)**AT Command: AT+INTMOD**
829 829  
... ... @@ -834,11 +834,7 @@
834 834  OK
835 835  the mode is 0 =Disable Interrupt
836 836  )))
837 -|(% style="width:154px" %)(((
838 -AT+INTMOD=2
839 -
840 -(default)
841 -)))|(% style="width:196px" %)(((
684 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
842 842  Set Transmit Interval
843 843  0. (Disable Interrupt),
844 844  ~1. (Trigger by rising and falling edge)
... ... @@ -856,35 +856,87 @@
856 856  
857 857  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
858 858  
859 -=== 3.3.3  Set Power Output Duration ===
860 860  
861 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
862 862  
863 -~1. first enable the power output to external sensor,
864 864  
865 -2. keep it on as per duration, read sensor value and construct uplink payload
866 866  
867 -3. final, close the power output.
706 +=== 3.3.3 Get Firmware Version Info ===
868 868  
869 -(% style="color:blue" %)**AT Command: AT+3V3T**
870 870  
871 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
872 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
873 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
874 -OK
875 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
876 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
877 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
709 +Feature: use downlink to get firmware version.
878 878  
879 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
880 -Format: Command Code (0x07) followed by 3 bytes.
711 +(% style="color:blue" %)**Downlink Command: 0x26**
881 881  
882 -The first byte is 01,the second and third bytes are the time to turn on.
713 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
714 +|(% style="background-color:#4F81BD;color:white; width:191px" %)**Downlink Control Type**|(% style="background-color:#4F81BD;color:white; width:57px" %)**FPort**|(% style="background-color:#4F81BD;color:white; width:91px" %)**Type Code**|(% style="background-color:#4F81BD;color:white; width:153px" %)**Downlink payload size(bytes)**
715 +|(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
883 883  
884 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
885 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
886 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
717 +* Reply to the confirmation package: 26 01
718 +* Reply to non-confirmed packet: 26 00
887 887  
720 +Device will send an uplink after got this downlink command. With below payload:
721 +
722 +Configures info payload:
723 +
724 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
725 +|=(% style="background-color:#4F81BD;color:white" %)(((
726 +**Size(bytes)**
727 +)))|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**5**|=(% style="background-color:#4F81BD;color:white" %)**1**
728 +|**Value**|Software Type|(((
729 +Frequency Band
730 +)))|Sub-band|(((
731 +Firmware Version
732 +)))|Sensor Type|Reserve|(((
733 +[[Message Type>>||anchor="H2.3.7MessageType"]]
734 +Always 0x02
735 +)))
736 +
737 +(% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
738 +
739 +(% style="color:#037691" %)**Frequency Band**:
740 +
741 +*0x01: EU868
742 +
743 +*0x02: US915
744 +
745 +*0x03: IN865
746 +
747 +*0x04: AU915
748 +
749 +*0x05: KZ865
750 +
751 +*0x06: RU864
752 +
753 +*0x07: AS923
754 +
755 +*0x08: AS923-1
756 +
757 +*0x09: AS923-2
758 +
759 +*0xa0: AS923-3
760 +
761 +
762 +(% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
763 +
764 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
765 +
766 +(% style="color:#037691" %)**Sensor Type**:
767 +
768 +0x01: LSE01
769 +
770 +0x02: LDDS75
771 +
772 +0x03: LDDS20
773 +
774 +0x04: LLMS01
775 +
776 +0x05: LSPH01
777 +
778 +0x06: LSNPK01
779 +
780 +0x07: LLDS12
781 +
782 +
888 888  = 4. Battery & Power Consumption =
889 889  
890 890  
... ... @@ -933,11 +933,11 @@
933 933  
934 934  
935 935  (((
936 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
831 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
937 937  )))
938 938  
939 939  (((
940 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
835 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
941 941  )))
942 942  
943 943  
... ... @@ -946,7 +946,7 @@
946 946  )))
947 947  
948 948  (((
949 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
844 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
950 950  )))
951 951  
952 952  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content