Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.2
edited by Xiaoling
on 2023/08/07 09:19
Change comment: There is no comment for this version
To version 113.7
edited by Xiaoling
on 2023/11/10 10:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,170 +18,59 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 -(% style="color:#037691" %)**LoRa Spec:**
83 -
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
88 -
89 -(% style="color:#037691" %)**Battery:**
90 -
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
96 -
97 -(% style="color:#037691" %)**Power Consumption**
98 -
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 -
102 -== 1.4 Applications ==
103 -
104 -
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 -
113 113  (% style="display:none" %)
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
69 += 2. Configure DS20L to connect to LoRaWAN network =
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 -
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 -
122 -
123 -== 1.6 Button & LEDs ==
124 -
125 -
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 -
128 -
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 -
142 -== 1.7 BLE connection ==
143 -
144 -
145 -LDS12-LB support BLE remote configure.
146 -
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 -
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
152 -
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 -
155 -
156 -== 1.8 Pin Definitions ==
157 -
158 -
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 -
161 -== 1.9 Mechanical ==
162 -
163 -
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165 -
166 -
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 -
169 -
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 -
172 -
173 -(% style="color:blue" %)**Probe Mechanical:**
174 -
175 -
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 -
178 -
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 -
181 181  == 2.1 How it works ==
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 185  
186 186  (% style="display:none" %) (%%)
187 187  
... ... @@ -192,12 +192,12 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
196 196  
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
90 +Each DS20L is shipped with a sticker with the default device EUI as below:
201 201  
202 202  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
... ... @@ -226,10 +226,10 @@
226 226  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
230 230  
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
122 +Press the button for 5 seconds to activate the DS20L.
233 233  
234 234  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
... ... @@ -241,7 +241,7 @@
241 241  === 2.3.1 Device Status, FPORT~=5 ===
242 242  
243 243  
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
245 245  
246 246  The Payload format is as below.
247 247  
... ... @@ -255,7 +255,7 @@
255 255  
256 256  [[image:image-20230805103904-1.png||height="131" width="711"]]
257 257  
258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
259 259  
260 260  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261 261  
... ... @@ -310,7 +310,7 @@
310 310  
311 311  
312 312  (((
313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
314 314  
315 315  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
316 316  
... ... @@ -335,7 +335,7 @@
335 335  ==== (% style="color:blue" %)**Battery Info**(%%) ====
336 336  
337 337  
338 -Check the battery voltage for LDS12-LB.
228 +Check the battery voltage for DS20L.
339 339  
340 340  Ex1: 0x0B45 = 2885mV
341 341  
... ... @@ -439,14 +439,15 @@
439 439  
440 440  === 2.3.3 Historical measuring distance, FPORT~=3 ===
441 441  
442 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.5.4Pollsensorvalue]].
443 443  
333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 +
444 444  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
445 445  
446 446  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 447  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
448 448  **Size(bytes)**
449 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
450 450  |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
451 451  Reserve(0xFF)
452 452  )))|Distance|Distance signal strength|(% style="width:88px" %)(((
... ... @@ -455,16 +455,16 @@
455 455  
456 456  **Interrupt flag & Interrupt level:**
457 457  
458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
459 459  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
460 460  **Size(bit)**
461 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
462 462  |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
463 463  Interrupt flag
464 464  )))
465 465  
466 466  * (((
467 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
468 468  )))
469 469  
470 470  For example, in the US915 band, the max payload for different DR is:
... ... @@ -477,7 +477,7 @@
477 477  
478 478  **d) DR3:** total payload includes 22 entries of data.
479 479  
480 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
481 481  
482 482  
483 483  **Downlink:**
... ... @@ -531,7 +531,7 @@
531 531  )))
532 532  
533 533  (((
534 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
425 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
535 535  )))
536 536  
537 537  
... ... @@ -560,7 +560,7 @@
560 560  
561 561  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
562 562  
563 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
564 564  
565 565  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
566 566  
... ... @@ -573,30 +573,27 @@
573 573  == 2.5 Datalog Feature ==
574 574  
575 575  
576 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
577 577  
578 578  
579 579  === 2.5.1 Ways to get datalog via LoRaWAN ===
580 580  
581 581  
582 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
583 583  
584 584  * (((
585 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
586 586  )))
587 587  * (((
588 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
589 589  )))
590 590  
591 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
592 592  
593 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
594 594  
595 -
596 596  === 2.5.2 Unix TimeStamp ===
597 597  
598 598  
599 -LDS12-LB uses Unix TimeStamp format based on
487 +DS20L uses Unix TimeStamp format based on
600 600  
601 601  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
602 602  
... ... @@ -615,7 +615,7 @@
615 615  
616 616  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
617 617  
618 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
619 619  
620 620  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
621 621  
... ... @@ -643,7 +643,7 @@
643 643  )))
644 644  
645 645  (((
646 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
534 +Uplink Internal =5s,means DS20L will send one packet every 5s. range 5~~255s.
647 647  )))
648 648  
649 649  
... ... @@ -650,101 +650,17 @@
650 650  == 2.6 Frequency Plans ==
651 651  
652 652  
653 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
541 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
654 654  
655 655  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
656 656  
657 657  
658 -== 2.7 LiDAR ToF Measurement ==
546 +3. Configure DS20L
659 659  
660 -=== 2.7.1 Principle of Distance Measurement ===
661 -
662 -
663 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
664 -
665 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
666 -
667 -
668 -=== 2.7.2 Distance Measurement Characteristics ===
669 -
670 -
671 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
672 -
673 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
674 -
675 -
676 -(((
677 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
678 -)))
679 -
680 -(((
681 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
682 -)))
683 -
684 -(((
685 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
686 -)))
687 -
688 -
689 -(((
690 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
691 -)))
692 -
693 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
694 -
695 -(((
696 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
697 -)))
698 -
699 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
700 -
701 -(((
702 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
703 -)))
704 -
705 -
706 -=== 2.7.3 Notice of usage ===
707 -
708 -
709 -Possible invalid /wrong reading for LiDAR ToF tech:
710 -
711 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
712 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
713 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
714 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
715 -
716 -=== 2.7.4  Reflectivity of different objects ===
717 -
718 -
719 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
720 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
721 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
722 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
723 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
724 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
725 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
726 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
727 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
728 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
729 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
730 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
731 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
732 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
733 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
734 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
735 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
736 -Unpolished white metal surface
737 -)))|(% style="width:93px" %)130%
738 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
739 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
740 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
741 -
742 -= 3. Configure LDS12-LB =
743 -
744 744  == 3.1 Configure Methods ==
745 745  
746 746  
747 -LDS12-LB supports below configure method:
551 +DS20L supports below configure method:
748 748  
749 749  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
750 750  
... ... @@ -766,10 +766,10 @@
766 766  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
767 767  
768 768  
769 -== 3.3 Commands special design for LDS12-LB ==
573 +== 3.3 Commands special design for DS20L ==
770 770  
771 771  
772 -These commands only valid for LDS12-LB, as below:
576 +These commands only valid for DS20L, as below:
773 773  
774 774  
775 775  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -855,39 +855,11 @@
855 855  
856 856  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
857 857  
858 -=== 3.3.3  Set Power Output Duration ===
859 859  
860 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
861 -
862 -~1. first enable the power output to external sensor,
863 -
864 -2. keep it on as per duration, read sensor value and construct uplink payload
865 -
866 -3. final, close the power output.
867 -
868 -(% style="color:blue" %)**AT Command: AT+3V3T**
869 -
870 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
871 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
872 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
873 -OK
874 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
875 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
877 -
878 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
879 -Format: Command Code (0x07) followed by 3 bytes.
880 -
881 -The first byte is 01,the second and third bytes are the time to turn on.
882 -
883 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
884 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
885 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
886 -
887 887  = 4. Battery & Power Consumption =
888 888  
889 889  
890 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
666 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
891 891  
892 892  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
893 893  
... ... @@ -896,7 +896,7 @@
896 896  
897 897  
898 898  (% class="wikigeneratedid" %)
899 -User can change firmware LDS12-LB to:
675 +User can change firmware DS20L to:
900 900  
901 901  * Change Frequency band/ region.
902 902  
... ... @@ -904,7 +904,7 @@
904 904  
905 905  * Fix bugs.
906 906  
907 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
908 908  
909 909  Methods to Update Firmware:
910 910  
... ... @@ -952,7 +952,7 @@
952 952  = 8. Order Info =
953 953  
954 954  
955 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
956 956  
957 957  (% style="color:red" %)**XXX**(%%): **The default frequency band**
958 958  
... ... @@ -977,7 +977,7 @@
977 977  
978 978  (% style="color:#037691" %)**Package Includes**:
979 979  
980 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
981 981  
982 982  (% style="color:#037691" %)**Dimension and weight**:
983 983  
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content