Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.2
edited by Xiaoling
on 2023/08/07 09:19
Change comment: There is no comment for this version
To version 113.5
edited by Xiaoling
on 2023/11/10 09:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,166 +18,55 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 57  == 1.3 Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 66  
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 -(% style="color:#037691" %)**LoRa Spec:**
83 -
84 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 -* Max +22 dBm constant RF output vs.
86 -* RX sensitivity: down to -139 dBm.
87 -* Excellent blocking immunity
88 -
89 -(% style="color:#037691" %)**Battery:**
90 -
91 -* Li/SOCI2 un-chargeable battery
92 -* Capacity: 8500mAh
93 -* Self-Discharge: <1% / Year @ 25°C
94 -* Max continuously current: 130mA
95 -* Max boost current: 2A, 1 second
96 -
97 -(% style="color:#037691" %)**Power Consumption**
98 -
99 -* Sleep Mode: 5uA @ 3.3v
100 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 -
102 -== 1.4 Applications ==
103 -
104 -
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 -
113 113  (% style="display:none" %)
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
69 += 2. Configure DS20L to connect to LoRaWAN network =
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 -
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 -
122 -
123 -== 1.6 Button & LEDs ==
124 -
125 -
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 -
128 -
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 -)))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 -
142 -== 1.7 BLE connection ==
143 -
144 -
145 -LDS12-LB support BLE remote configure.
146 -
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 -
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
152 -
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 -
155 -
156 -== 1.8 Pin Definitions ==
157 -
158 -
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 -
161 -== 1.9 Mechanical ==
162 -
163 -
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165 -
166 -
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 -
169 -
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 -
172 -
173 -(% style="color:blue" %)**Probe Mechanical:**
174 -
175 -
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 -
178 -
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 -
181 181  == 2.1 How it works ==
182 182  
183 183  
... ... @@ -192,7 +192,7 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
196 196  
197 197  
198 198  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -439,14 +439,15 @@
439 439  
440 440  === 2.3.3 Historical measuring distance, FPORT~=3 ===
441 441  
442 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.5.4Pollsensorvalue]].
443 443  
333 +LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
334 +
444 444  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
445 445  
446 446  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 447  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
448 448  **Size(bytes)**
449 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
340 +)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
450 450  |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
451 451  Reserve(0xFF)
452 452  )))|Distance|Distance signal strength|(% style="width:88px" %)(((
... ... @@ -455,16 +455,16 @@
455 455  
456 456  **Interrupt flag & Interrupt level:**
457 457  
458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
459 459  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
460 460  **Size(bit)**
461 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
352 +)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
462 462  |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
463 463  Interrupt flag
464 464  )))
465 465  
466 466  * (((
467 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
468 468  )))
469 469  
470 470  For example, in the US915 band, the max payload for different DR is:
... ... @@ -588,11 +588,8 @@
588 588  b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
589 589  )))
590 590  
591 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
592 592  
593 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
594 594  
595 -
596 596  === 2.5.2 Unix TimeStamp ===
597 597  
598 598  
... ... @@ -655,92 +655,8 @@
655 655  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
656 656  
657 657  
658 -== 2.7 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
659 659  
660 -=== 2.7.1 Principle of Distance Measurement ===
661 -
662 -
663 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
664 -
665 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
666 -
667 -
668 -=== 2.7.2 Distance Measurement Characteristics ===
669 -
670 -
671 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
672 -
673 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
674 -
675 -
676 -(((
677 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
678 -)))
679 -
680 -(((
681 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
682 -)))
683 -
684 -(((
685 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
686 -)))
687 -
688 -
689 -(((
690 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
691 -)))
692 -
693 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
694 -
695 -(((
696 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
697 -)))
698 -
699 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
700 -
701 -(((
702 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
703 -)))
704 -
705 -
706 -=== 2.7.3 Notice of usage ===
707 -
708 -
709 -Possible invalid /wrong reading for LiDAR ToF tech:
710 -
711 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
712 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
713 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
714 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
715 -
716 -=== 2.7.4  Reflectivity of different objects ===
717 -
718 -
719 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
720 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
721 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
722 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
723 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
724 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
725 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
726 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
727 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
728 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
729 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
730 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
731 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
732 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
733 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
734 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
735 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
736 -Unpolished white metal surface
737 -)))|(% style="width:93px" %)130%
738 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
739 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
740 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
741 -
742 -= 3. Configure LDS12-LB =
743 -
744 744  == 3.1 Configure Methods ==
745 745  
746 746  
... ... @@ -855,35 +855,7 @@
855 855  
856 856  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
857 857  
858 -=== 3.3.3  Set Power Output Duration ===
859 859  
860 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
861 -
862 -~1. first enable the power output to external sensor,
863 -
864 -2. keep it on as per duration, read sensor value and construct uplink payload
865 -
866 -3. final, close the power output.
867 -
868 -(% style="color:blue" %)**AT Command: AT+3V3T**
869 -
870 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
871 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
872 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
873 -OK
874 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
875 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
876 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
877 -
878 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
879 -Format: Command Code (0x07) followed by 3 bytes.
880 -
881 -The first byte is 01,the second and third bytes are the time to turn on.
882 -
883 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
884 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
885 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
886 -
887 887  = 4. Battery & Power Consumption =
888 888  
889 889  
... ... @@ -952,7 +952,7 @@
952 952  = 8. Order Info =
953 953  
954 954  
955 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
956 956  
957 957  (% style="color:red" %)**XXX**(%%): **The default frequency band**
958 958  
... ... @@ -977,7 +977,7 @@
977 977  
978 978  (% style="color:#037691" %)**Package Includes**:
979 979  
980 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
981 981  
982 982  (% style="color:#037691" %)**Dimension and weight**:
983 983  
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content