Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -DS20L _LoRaWAN_Smart_Distance_Detector_User_Manual1 +DS20L -- LoRaWAN Smart Distance Detector User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023 0614153353-1.png]]2 +[[image:image-20231110085342-2.png||height="481" width="481"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,170 +18,55 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDARToFDistanceSensor ==22 +== 1.1 What is LoRaWAN Smart Distance Detector == 22 22 23 23 24 -The Dragino LDS12-LB is a(% style="color:blue" %)**LoRaWANLiDARToF(Time of Flight)DistanceSensor**(%%)forInternetofThings solution. Itis capabletomeasure the distance toan objectas closeas 10centimeters(+/- 5cm up to 6m) andas far as 12 meters(+/-1%startingat6m)!.TheLiDAR probeuseslaser induction technologyfordistancemeasurement.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 25 25 26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 27 28 - Itdetects thedistance betweenthemeasuredobject andthe sensor,anduploadsthevalue viawirelesstoLoRaWANIoTServer.30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.** 29 29 30 - TheLoRawirelesstechnologyused in LDS12-LB allowsdevice tosend data and reachextremelyngrangesatlowdata-rates.Itprovides ultra-long range spread spectrum communicationandhigh interferenceimmunity whilstminimizing currentconsumption.32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 31 31 32 - LDS12-LB(% style="color:blue" %)**supports BLE configure**(%%)and (%style="color:blue"%)**wirelessOTAupdate**(%%) whichmakeuser easyto use.34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 33 33 34 - LDS12-LBis powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%),it isdesigned for longterm use up to 5 years.36 +[[image:image-20231110091506-4.png||height="391" width="768"]] 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-20230615152941-1.png||height="459" width="800"]] 39 - 40 - 41 41 == 1.2 Features == 42 42 43 43 44 -* LoRaWAN 1.0.3 Class A 45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 -* Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m 49 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 50 -* Monitor Battery Level 51 -* Support Bluetooth v5.1 and LoRaWAN remote configure 52 -* Support wireless OTA update firmware 42 +* LoRaWAN Class A protocol 43 +* LiDAR distance detector, range 3 ~~ 200cm 44 +* Periodically detect or continuously detect mode 53 53 * AT Commands to change parameters 54 -* Downlink to change configure 55 -* 8500mAh Battery for long term use 46 +* Remotely configure parameters via LoRaWAN Downlink 47 +* Alarm & Counting mode 48 +* Datalog Feature 49 +* Firmware upgradable via program port or LoRa protocol 50 +* Built-in 2400mAh battery or power by external power source 56 56 57 - 58 58 == 1.3 Specification == 59 59 60 60 61 -(% style="color:#037691" %)** CommonDCCharacteristics:**55 +(% style="color:#037691" %)**LiDAR Sensor:** 62 62 63 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 64 -* Operating Temperature: -40 ~~ 85°C 57 +* Operation Temperature: -40 ~~ 80 °C 58 +* Operation Humidity: 0~~99.9%RH (no Dew) 59 +* Storage Temperature: -10 ~~ 45°C 60 +* Measure Range: 3cm~~200cm @ 90% reflectivity 61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 +* ToF FoV: ±9°, Total 18° 63 +* Light source: VCSEL 65 65 66 -(% style="color:#037691" %)**Probe Specification:** 67 67 68 -* Storage temperature:-20℃~~75℃ 69 -* Operating temperature : -20℃~~60℃ 70 -* Measure Distance: 71 -** 0.1m ~~ 12m @ 90% Reflectivity 72 -** 0.1m ~~ 4m @ 10% Reflectivity 73 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m) 74 -* Distance resolution : 1cm 75 -* Ambient light immunity : 70klux 76 -* Enclosure rating : IP65 77 -* Light source : LED 78 -* Central wavelength : 850nm 79 -* FOV : 3.6° 80 -* Material of enclosure : ABS+PC 81 -* Wire length : 25cm 82 - 83 -(% style="color:#037691" %)**LoRa Spec:** 84 - 85 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 86 -* Max +22 dBm constant RF output vs. 87 -* RX sensitivity: down to -139 dBm. 88 -* Excellent blocking immunity 89 - 90 -(% style="color:#037691" %)**Battery:** 91 - 92 -* Li/SOCI2 un-chargeable battery 93 -* Capacity: 8500mAh 94 -* Self-Discharge: <1% / Year @ 25°C 95 -* Max continuously current: 130mA 96 -* Max boost current: 2A, 1 second 97 - 98 -(% style="color:#037691" %)**Power Consumption** 99 - 100 -* Sleep Mode: 5uA @ 3.3v 101 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 102 - 103 - 104 -== 1.4 Applications == 105 - 106 - 107 -* Horizontal distance measurement 108 -* Parking management system 109 -* Object proximity and presence detection 110 -* Intelligent trash can management system 111 -* Robot obstacle avoidance 112 -* Automatic control 113 -* Sewer 114 - 115 - 116 116 (% style="display:none" %) 117 117 118 -== 1.5 Sleep mode and working mode == 119 119 69 += 2. Configure DS20L to connect to LoRaWAN network = 120 120 121 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 122 - 123 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 124 - 125 - 126 -== 1.6 Button & LEDs == 127 - 128 - 129 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 130 - 131 - 132 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 133 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 134 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 135 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 136 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 137 -))) 138 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 139 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 140 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 141 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 142 -))) 143 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 144 - 145 - 146 -== 1.7 BLE connection == 147 - 148 - 149 -LDS12-LB support BLE remote configure. 150 - 151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 152 - 153 -* Press button to send an uplink 154 -* Press button to active device. 155 -* Device Power on or reset. 156 - 157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 158 - 159 - 160 -== 1.8 Pin Definitions == 161 - 162 - 163 -[[image:image-20230805144259-1.png||height="413" width="741"]] 164 - 165 -== 1.9 Mechanical == 166 - 167 - 168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 169 - 170 - 171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 172 - 173 - 174 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 175 - 176 - 177 -(% style="color:blue" %)**Probe Mechanical:** 178 - 179 - 180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 181 - 182 - 183 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 184 - 185 185 == 2.1 How it works == 186 186 187 187 ... ... @@ -196,7 +196,7 @@ 196 196 197 197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 198 198 199 -[[image:image-2023 0615153004-2.png||height="459" width="800"]](% style="display:none" %)85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 200 200 201 201 202 202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -593,11 +593,8 @@ 593 593 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages. 594 594 ))) 595 595 596 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 597 597 598 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 599 599 600 - 601 601 === 2.5.2 Unix TimeStamp === 602 602 603 603 ... ... @@ -660,94 +660,8 @@ 660 660 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 661 661 662 662 663 - ==2.7 LiDARToF Measurement==546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB 664 664 665 -=== 2.7.1 Principle of Distance Measurement === 666 - 667 - 668 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 669 - 670 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 671 - 672 - 673 -=== 2.7.2 Distance Measurement Characteristics === 674 - 675 - 676 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 677 - 678 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 679 - 680 - 681 -((( 682 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 683 -))) 684 - 685 -((( 686 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 687 -))) 688 - 689 -((( 690 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 691 -))) 692 - 693 - 694 -((( 695 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 696 -))) 697 - 698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 699 - 700 -((( 701 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 702 -))) 703 - 704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 705 - 706 -((( 707 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 708 -))) 709 - 710 - 711 -=== 2.7.3 Notice of usage === 712 - 713 - 714 -Possible invalid /wrong reading for LiDAR ToF tech: 715 - 716 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 717 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 718 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 719 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 720 - 721 - 722 -=== 2.7.4 Reflectivity of different objects === 723 - 724 - 725 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 726 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 727 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 728 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 729 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 730 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 731 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 732 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 733 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 734 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 735 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 736 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 737 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 738 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 739 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 740 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 741 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 742 -Unpolished white metal surface 743 -)))|(% style="width:93px" %)130% 744 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 745 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 746 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 747 - 748 - 749 -= 3. Configure LDS12-LB = 750 - 751 751 == 3.1 Configure Methods == 752 752 753 753 ... ... @@ -759,7 +759,6 @@ 759 759 760 760 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 761 761 762 - 763 763 == 3.2 General Commands == 764 764 765 765 ... ... @@ -864,36 +864,6 @@ 864 864 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 865 865 866 866 867 -=== 3.3.3 Set Power Output Duration === 868 - 869 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 870 - 871 -~1. first enable the power output to external sensor, 872 - 873 -2. keep it on as per duration, read sensor value and construct uplink payload 874 - 875 -3. final, close the power output. 876 - 877 -(% style="color:blue" %)**AT Command: AT+3V3T** 878 - 879 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 880 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 881 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 882 -OK 883 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 884 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 885 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 886 - 887 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 888 -Format: Command Code (0x07) followed by 3 bytes. 889 - 890 -The first byte is 01,the second and third bytes are the time to turn on. 891 - 892 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 893 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 894 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 895 - 896 - 897 897 = 4. Battery & Power Consumption = 898 898 899 899 ... ... @@ -922,7 +922,6 @@ 922 922 923 923 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 924 924 925 - 926 926 = 6. FAQ = 927 927 928 928 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -963,7 +963,7 @@ 963 963 = 8. Order Info = 964 964 965 965 966 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**731 +Part Number: (% style="color:blue" %)**DS20L-XXX** 967 967 968 968 (% style="color:red" %)**XXX**(%%): **The default frequency band** 969 969 ... ... @@ -983,13 +983,12 @@ 983 983 984 984 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 985 985 986 - 987 987 = 9. Packing Info = 988 988 989 989 990 990 (% style="color:#037691" %)**Package Includes**: 991 991 992 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1756 +* DS20L LoRaWAN Smart Distance Detector x 1 993 993 994 994 (% style="color:#037691" %)**Dimension and weight**: 995 995 ... ... @@ -1001,7 +1001,6 @@ 1001 1001 1002 1002 * Weight / pcs : g 1003 1003 1004 - 1005 1005 = 10. Support = 1006 1006 1007 1007
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content