Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.12
edited by Xiaoling
on 2023/10/28 16:57
Change comment: There is no comment for this version
To version 82.1
edited by Xiaoling
on 2023/06/14 16:24
Change comment: Uploaded new attachment "image-20230614162359-3.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,14 +44,16 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m
49 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 57  
... ... @@ -63,23 +63,6 @@
63 63  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 -
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 -* Distance resolution : 1cm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 83  (% style="color:#037691" %)**LoRa Spec:**
84 84  
85 85  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -101,29 +101,145 @@
101 101  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 102  
103 103  
104 -== 1.4 Applications ==
89 +== 1.4 Suitable Container & Liquid ==
105 105  
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
114 114  
115 115  
116 116  (% style="display:none" %)
117 117  
118 -== 1.5 Sleep mode and working mode ==
102 +== 1.5 Install LDS12-LB ==
119 119  
120 120  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
106 +
107 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
108 +
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
110 +
111 +
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
115 +
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
118 +)))
119 +
120 +[[image:image-20230613143052-5.png]]
121 +
122 +
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
124 +
125 +[[image:image-20230613143125-6.png]]
126 +
127 +
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
131 +
132 +(((
133 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
135 +
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
138 +)))
139 +
140 +(((
141 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
143 +
144 +
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
148 +
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
152 +
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
159 +
160 +(((
161 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
163 +
164 +
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
168 +
169 +
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
173 +
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
177 +
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
181 +
182 +(((
183 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
184 +)))
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
187 +
188 +
189 +(((
190 +(% style="color:red" %)**Note :**
191 +
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
194 +
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
198 +
199 +
200 +== 1.6 Applications ==
201 +
202 +
203 +* Smart liquid control solution
204 +
205 +* Smart liquefied gas solution
206 +
207 +
208 +== 1.7 Precautions ==
209 +
210 +
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
212 +
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
214 +
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
216 +
217 +(% style="display:none" %)
218 +
219 +== 1.8 Sleep mode and working mode ==
220 +
221 +
121 121  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122 122  
123 123  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 124  
125 125  
126 -== 1.6 Button & LEDs ==
227 +== 1.9 Button & LEDs ==
127 127  
128 128  
129 129  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -130,7 +130,7 @@
130 130  
131 131  
132 132  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
134 134  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 135  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 136  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -143,7 +143,7 @@
143 143  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 144  
145 145  
146 -== 1.7 BLE connection ==
247 +== 1.10 BLE connection ==
147 147  
148 148  
149 149  LDS12-LB support BLE remote configure.
... ... @@ -157,12 +157,12 @@
157 157  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158 158  
159 159  
160 -== 1.8 Pin Definitions ==
261 +== 1.11 Pin Definitions ==
161 161  
263 +[[image:image-20230523174230-1.png]]
162 162  
163 -[[image:image-20230805144259-1.png||height="413" width="741"]]
164 164  
165 -== 1.9 Mechanical ==
266 +== 1.12 Mechanical ==
166 166  
167 167  
168 168  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -176,10 +176,12 @@
176 176  
177 177  (% style="color:blue" %)**Probe Mechanical:**
178 178  
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
179 179  
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 181  
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
182 182  
285 +
183 183  = 2. Configure LDS12-LB to connect to LoRaWAN network =
184 184  
185 185  == 2.1 How it works ==
... ... @@ -196,7 +196,7 @@
196 196  
197 197  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
200 200  
201 201  
202 202  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -240,118 +240,76 @@
240 240  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241 241  
242 242  
243 -== 2.3 ​Uplink Payload ==
346 +== 2.3  ​Uplink Payload ==
244 244  
245 -=== 2.3.1 Device Status, FPORT~=5 ===
246 246  
349 +(((
350 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
351 +)))
247 247  
248 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
353 +(((
354 +Uplink payload includes in total 8 bytes.
355 +)))
249 249  
250 -The Payload format is as below.
251 -
252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
254 254  **Size(bytes)**
255 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
257 257  
258 -Example parse in TTNv3
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
259 259  
260 -[[image:image-20230805103904-1.png||height="131" width="711"]]
261 261  
262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
371 +=== 2.3.1  Battery Info ===
263 263  
264 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265 265  
266 -(% style="color:blue" %)**Frequency Band**:
374 +Check the battery voltage for LDS12-LB.
267 267  
268 -0x01: EU868
269 -
270 -0x02: US915
271 -
272 -0x03: IN865
273 -
274 -0x04: AU915
275 -
276 -0x05: KZ865
277 -
278 -0x06: RU864
279 -
280 -0x07: AS923
281 -
282 -0x08: AS923-1
283 -
284 -0x09: AS923-2
285 -
286 -0x0a: AS923-3
287 -
288 -0x0b: CN470
289 -
290 -0x0c: EU433
291 -
292 -0x0d: KR920
293 -
294 -0x0e: MA869
295 -
296 -(% style="color:blue" %)**Sub-Band**:
297 -
298 -AU915 and US915:value 0x00 ~~ 0x08
299 -
300 -CN470: value 0x0B ~~ 0x0C
301 -
302 -Other Bands: Always 0x00
303 -
304 -(% style="color:blue" %)**Battery Info**:
305 -
306 -Check the battery voltage.
307 -
308 308  Ex1: 0x0B45 = 2885mV
309 309  
310 310  Ex2: 0x0B49 = 2889mV
311 311  
312 312  
313 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
381 +=== 2.3.2  Distance ===
314 314  
315 315  
316 316  (((
317 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
318 318  
319 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
320 320  
321 -Uplink Payload totals 11 bytes.
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
322 322  )))
323 323  
324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 -**Size(bytes)**
327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 -[[Message Type>>||anchor="HMessageType"]]
334 -)))
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
335 335  
336 -[[image:image-20230805104104-2.png||height="136" width="754"]]
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
337 337  
338 338  
339 -==== (% style="color:blue" %)**Battery Info**(%%) ====
399 +=== 2.3.3  Interrupt Pin ===
340 340  
341 341  
342 -Check the battery voltage for LDS12-LB.
402 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
343 343  
344 -Ex1: 0x0B45 = 2885mV
404 +**Example:**
345 345  
346 -Ex2: 0x0B49 = 2889mV
406 +0x00: Normal uplink packet.
347 347  
408 +0x01: Interrupt Uplink Packet.
348 348  
349 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350 350  
411 +=== 2.3.4  DS18B20 Temperature sensor ===
351 351  
413 +
352 352  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353 353  
354 -
355 355  **Example**:
356 356  
357 357  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -359,191 +359,42 @@
359 359  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360 360  
361 361  
362 -==== (% style="color:blue" %)**Distance**(%%) ====
423 +=== 2.3.5  Sensor Flag ===
363 363  
364 364  
365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366 -
367 -
368 -**Example**:
369 -
370 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371 -
372 -
373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374 -
375 -
376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377 -
378 -
379 -**Example**:
380 -
381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382 -
383 -Customers can judge whether they need to adjust the environment based on the signal strength.
384 -
385 -
386 -**1) When the sensor detects valid data:**
387 -
388 -[[image:image-20230805155335-1.png||height="145" width="724"]]
389 -
390 -
391 -**2) When the sensor detects invalid data:**
392 -
393 -[[image:image-20230805155428-2.png||height="139" width="726"]]
394 -
395 -
396 -**3) When the sensor is not connected:**
397 -
398 -[[image:image-20230805155515-3.png||height="143" width="725"]]
399 -
400 -
401 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
402 -
403 -
404 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
405 -
406 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
407 -
408 -**Example:**
409 -
410 -If byte[0]&0x01=0x00 : Normal uplink packet.
411 -
412 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
413 -
414 -
415 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
416 -
417 -
418 -Characterize the internal temperature value of the sensor.
419 -
420 -**Example: **
421 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
422 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
423 -
424 -
425 -==== (% style="color:blue" %)**Message Type**(%%) ====
426 -
427 -
428 428  (((
429 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
430 430  )))
431 431  
432 432  (((
433 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
434 434  )))
435 435  
436 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
437 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
438 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
439 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
440 440  
441 -[[image:image-20230805150315-4.png||height="233" width="723"]]
435 +=== 2.3.6  Decode payload in The Things Network ===
442 442  
443 443  
444 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
438 +While using TTN network, you can add the payload format to decode the payload.
445 445  
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
446 446  
447 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
442 +The payload decoder function for TTN V3 is here:
448 448  
449 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
450 -
451 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
452 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
453 -**Size(bytes)**
454 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
455 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
456 -Reserve(0xFF)
457 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
458 -LiDAR temp
459 -)))|(% style="width:85px" %)Unix TimeStamp
460 -
461 -**Interrupt flag & Interrupt level:**
462 -
463 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
464 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
465 -**Size(bit)**
466 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
467 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
468 -Interrupt flag
444 +(((
445 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
469 469  )))
470 470  
471 -* (((
472 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
473 -)))
474 474  
475 -For example, in the US915 band, the max payload for different DR is:
449 +== 2.4  Uplink Interval ==
476 476  
477 -**a) DR0:** max is 11 bytes so one entry of data
478 478  
479 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
452 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
480 480  
481 -**c) DR2:** total payload includes 11 entries of data
482 482  
483 -**d) DR3:** total payload includes 22 entries of data.
455 +== 2.5  ​Show Data in DataCake IoT Server ==
484 484  
485 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
486 486  
487 -
488 -**Downlink:**
489 -
490 -0x31 64 CC 68 0C 64 CC 69 74 05
491 -
492 -[[image:image-20230805144936-2.png||height="113" width="746"]]
493 -
494 -**Uplink:**
495 -
496 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
497 -
498 -
499 -**Parsed Value:**
500 -
501 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
502 -
503 -
504 -[360,176,30,High,True,2023-08-04 02:53:00],
505 -
506 -[355,168,30,Low,False,2023-08-04 02:53:29],
507 -
508 -[245,211,30,Low,False,2023-08-04 02:54:29],
509 -
510 -[57,700,30,Low,False,2023-08-04 02:55:29],
511 -
512 -[361,164,30,Low,True,2023-08-04 02:56:00],
513 -
514 -[337,184,30,Low,False,2023-08-04 02:56:40],
515 -
516 -[20,4458,30,Low,False,2023-08-04 02:57:40],
517 -
518 -[362,173,30,Low,False,2023-08-04 02:58:53],
519 -
520 -
521 -**History read from serial port:**
522 -
523 -[[image:image-20230805145056-3.png]]
524 -
525 -
526 -=== 2.3.4 Decode payload in The Things Network ===
527 -
528 -
529 -While using TTN network, you can add the payload format to decode the payload.
530 -
531 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
532 -
533 -
534 534  (((
535 -The payload decoder function for TTN is here:
536 -)))
537 -
538 -(((
539 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
540 -)))
541 -
542 -
543 -== 2.4 ​Show Data in DataCake IoT Server ==
544 -
545 -
546 -(((
547 547  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
548 548  )))
549 549  
... ... @@ -575,13 +575,13 @@
575 575  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
576 576  
577 577  
578 -== 2.5 Datalog Feature ==
490 +== 2.6 Datalog Feature ==
579 579  
580 580  
581 581  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
582 582  
583 583  
584 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
496 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
585 585  
586 586  
587 587  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -598,7 +598,7 @@
598 598  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
599 599  
600 600  
601 -=== 2.5.2 Unix TimeStamp ===
513 +=== 2.6.2 Unix TimeStamp ===
602 602  
603 603  
604 604  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -615,7 +615,7 @@
615 615  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
616 616  
617 617  
618 -=== 2.5.3 Set Device Time ===
530 +=== 2.6.3 Set Device Time ===
619 619  
620 620  
621 621  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -625,13 +625,13 @@
625 625  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
626 626  
627 627  
628 -=== 2.5.4 Poll sensor value ===
540 +=== 2.6.4 Poll sensor value ===
629 629  
630 630  
631 631  Users can poll sensor values based on timestamps. Below is the downlink command.
632 632  
633 633  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
634 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
635 635  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
636 636  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
637 637  
... ... @@ -652,7 +652,7 @@
652 652  )))
653 653  
654 654  
655 -== 2.6 Frequency Plans ==
567 +== 2.7 Frequency Plans ==
656 656  
657 657  
658 658  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -660,92 +660,6 @@
660 660  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
661 661  
662 662  
663 -== 2.7 LiDAR ToF Measurement ==
664 -
665 -=== 2.7.1 Principle of Distance Measurement ===
666 -
667 -
668 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
669 -
670 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
671 -
672 -
673 -=== 2.7.2 Distance Measurement Characteristics ===
674 -
675 -
676 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
677 -
678 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
679 -
680 -
681 -(((
682 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
683 -)))
684 -
685 -(((
686 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
687 -)))
688 -
689 -(((
690 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
691 -)))
692 -
693 -
694 -(((
695 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
696 -)))
697 -
698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
699 -
700 -(((
701 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
702 -)))
703 -
704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
705 -
706 -(((
707 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
708 -)))
709 -
710 -
711 -=== 2.7.3 Notice of usage ===
712 -
713 -
714 -Possible invalid /wrong reading for LiDAR ToF tech:
715 -
716 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
717 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
718 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
719 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
720 -
721 -
722 -=== 2.7.4  Reflectivity of different objects ===
723 -
724 -
725 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
726 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
727 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
728 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
729 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
730 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
731 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
732 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
733 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
734 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
735 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
736 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
737 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
738 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
739 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
740 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
741 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
742 -Unpolished white metal surface
743 -)))|(% style="width:93px" %)130%
744 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
745 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
746 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
747 -
748 -
749 749  = 3. Configure LDS12-LB =
750 750  
751 751  == 3.1 Configure Methods ==
... ... @@ -792,7 +792,7 @@
792 792  )))
793 793  
794 794  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
795 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
796 796  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
797 797  30000
798 798  OK
... ... @@ -828,24 +828,20 @@
828 828  === 3.3.2 Set Interrupt Mode ===
829 829  
830 830  
831 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
657 +Feature, Set Interrupt mode for PA8 of pin.
832 832  
833 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
659 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
834 834  
835 835  (% style="color:blue" %)**AT Command: AT+INTMOD**
836 836  
837 837  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
838 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
839 839  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
840 840  0
841 841  OK
842 842  the mode is 0 =Disable Interrupt
843 843  )))
844 -|(% style="width:154px" %)(((
845 -AT+INTMOD=2
846 -
847 -(default)
848 -)))|(% style="width:196px" %)(((
670 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
849 849  Set Transmit Interval
850 850  0. (Disable Interrupt),
851 851  ~1. (Trigger by rising and falling edge)
... ... @@ -864,36 +864,6 @@
864 864  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
865 865  
866 866  
867 -=== 3.3.3  Set Power Output Duration ===
868 -
869 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
870 -
871 -~1. first enable the power output to external sensor,
872 -
873 -2. keep it on as per duration, read sensor value and construct uplink payload
874 -
875 -3. final, close the power output.
876 -
877 -(% style="color:blue" %)**AT Command: AT+3V3T**
878 -
879 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
880 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
881 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
882 -OK
883 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
884 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
885 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
886 -
887 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
888 -Format: Command Code (0x07) followed by 3 bytes.
889 -
890 -The first byte is 01,the second and third bytes are the time to turn on.
891 -
892 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
893 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
894 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
895 -
896 -
897 897  = 4. Battery & Power Consumption =
898 898  
899 899  
... ... @@ -914,7 +914,7 @@
914 914  
915 915  * Fix bugs.
916 916  
917 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
918 918  
919 919  Methods to Update Firmware:
920 920  
... ... @@ -943,11 +943,11 @@
943 943  
944 944  
945 945  (((
946 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
738 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
947 947  )))
948 948  
949 949  (((
950 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
742 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
951 951  )))
952 952  
953 953  
... ... @@ -956,7 +956,7 @@
956 956  )))
957 957  
958 958  (((
959 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
751 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
960 960  )))
961 961  
962 962  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content