Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.12
edited by Xiaoling
on 2023/10/28 16:57
Change comment: There is no comment for this version
To version 79.2
edited by Xiaoling
on 2023/06/13 14:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,17 +44,18 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m
49 -* Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
57 -
58 58  == 1.3 Specification ==
59 59  
60 60  
... ... @@ -63,23 +63,6 @@
63 63  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**Probe Specification:**
67 -
68 -* Storage temperature:-20℃~~75℃
69 -* Operating temperature : -20℃~~60℃
70 -* Measure Distance:
71 -** 0.1m ~~ 12m @ 90% Reflectivity
72 -** 0.1m ~~ 4m @ 10% Reflectivity
73 -* Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 -* Distance resolution : 1cm
75 -* Ambient light immunity : 70klux
76 -* Enclosure rating : IP65
77 -* Light source : LED
78 -* Central wavelength : 850nm
79 -* FOV : 3.6°
80 -* Material of enclosure : ABS+PC
81 -* Wire length : 25cm
82 -
83 83  (% style="color:#037691" %)**LoRa Spec:**
84 84  
85 85  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -100,450 +100,387 @@
100 100  * Sleep Mode: 5uA @ 3.3v
101 101  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102 102  
88 +== 1.4 Suitable Container & Liquid ==
103 103  
104 -== 1.4 Applications ==
105 105  
91 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
92 +* Container shape is regular, and surface is smooth.
93 +* Container Thickness:
94 +** Pure metal material.  2~~8mm, best is 3~~5mm
95 +** Pure non metal material: <10 mm
96 +* Pure liquid without irregular deposition.(% style="display:none" %)
106 106  
107 -* Horizontal distance measurement
108 -* Parking management system
109 -* Object proximity and presence detection
110 -* Intelligent trash can management system
111 -* Robot obstacle avoidance
112 -* Automatic control
113 -* Sewer
114 114  
99 +== 1.5 Install DDS20-LB ==
115 115  
116 -(% style="display:none" %)
117 117  
118 -== 1.5 Sleep mode and working mode ==
102 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
119 119  
104 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
120 120  
121 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
106 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
122 122  
123 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124 124  
109 +(((
110 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
111 +)))
125 125  
126 -== 1.6 Button & LEDs ==
127 -
128 -
129 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130 -
131 -
132 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
113 +(((
114 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
137 137  )))
138 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 -)))
143 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144 144  
117 +[[image:image-20230613143052-5.png]]
145 145  
146 -== 1.7 BLE connection ==
147 147  
120 +No polish needed if the container is shine metal surface without paint or non-metal container.
148 148  
149 -LDS12-LB support BLE remote configure.
122 +[[image:image-20230613143125-6.png]]
150 150  
151 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152 152  
153 -* Press button to send an uplink
154 -* Press button to active device.
155 -* Device Power on or reset.
156 156  
157 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
126 +(((
127 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
128 +)))
158 158  
130 +(((
131 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
132 +)))
159 159  
160 -== 1.8 Pin Definitions ==
161 161  
135 +(((
136 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
137 +)))
162 162  
163 -[[image:image-20230805144259-1.png||height="413" width="741"]]
139 +[[image:1655256160324-178.png||height="151" width="419"]][[image:image-20220615092327-13.png||height="146" width="260"]]
164 164  
165 -== 1.9 Mechanical ==
166 166  
142 +(((
143 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
144 +)))
167 167  
168 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
169 169  
147 +(((
148 +(% style="color:red" %)**LED Status:**
149 +)))
170 170  
171 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
151 +* (((
152 +Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
153 +)))
172 172  
155 +* (((
156 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
157 +)))
158 +* (((
159 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
160 +)))
173 173  
174 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
162 +(((
163 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
164 +)))
175 175  
176 176  
177 -(% style="color:blue" %)**Probe Mechanical:**
167 +(((
168 +(% style="color:red" %)**Note 2:**
169 +)))
178 178  
171 +(((
172 +(% style="color:red" %)**Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
173 +)))
179 179  
180 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181 181  
176 +(((
177 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
178 +)))
182 182  
183 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 +(((
181 +Prepare Eproxy AB glue.
182 +)))
184 184  
185 -== 2.1 How it works ==
184 +(((
185 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
186 +)))
186 186  
188 +(((
189 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
190 +)))
187 187  
188 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
192 +[[image:image-20220615091045-8.png||height="203" width="341"]] [[image:image-20220615091045-9.png||height="200" width="284"]]
189 189  
190 -(% style="display:none" %) (%%)
191 191  
192 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
195 +(((
196 +(% style="color:red" %)**Note 1:**
197 +)))
193 193  
199 +(((
200 +Eproxy AB glue needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
201 +)))
194 194  
195 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196 196  
197 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
204 +(((
205 +(% style="color:red" %)**Note 2:**
206 +)))
198 198  
199 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
208 +(((
209 +(% style="color:red" %)**Eproxy AB glue**(%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
210 +)))
200 200  
201 201  
202 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
213 +== 1.6 Applications ==
203 203  
204 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205 205  
206 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
216 +* Smart liquid control solution.
207 207  
218 +* Smart liquefied gas solution.
208 208  
209 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210 210  
211 211  
212 -(% style="color:blue" %)**Register the device**
222 +== 1.7 Precautions ==
213 213  
214 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
215 215  
225 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
216 216  
217 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
227 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
218 218  
219 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
229 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
220 220  
221 221  
222 -(% style="color:blue" %)**Add APP EUI in the application**
232 +== 1.8 Sleep mode and working mode ==
223 223  
224 224  
225 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
235 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
226 226  
237 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
227 227  
228 -(% style="color:blue" %)**Add APP KEY**
229 229  
230 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
240 +== 1.9 Button & LEDs ==
231 231  
232 232  
233 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
243 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
234 234  
235 235  
236 -Press the button for 5 seconds to activate the LDS12-LB.
246 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
248 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
249 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
250 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 +)))
252 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
253 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
254 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
255 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 +)))
257 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
237 237  
238 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
259 +== 1.10 BLE connection ==
239 239  
240 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241 241  
262 +DDS20-LB support BLE remote configure.
242 242  
243 -== 2.3 ​Uplink Payload ==
264 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
244 244  
245 -=== 2.3.1 Device Status, FPORT~=5 ===
266 +* Press button to send an uplink
267 +* Press button to active device.
268 +* Device Power on or reset.
246 246  
270 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
247 247  
248 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249 249  
250 -The Payload format is as below.
273 +== 1.11 Pin Definitions ==
251 251  
252 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 -**Size(bytes)**
255 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
275 +[[image:image-20230523174230-1.png]]
257 257  
258 -Example parse in TTNv3
259 259  
260 -[[image:image-20230805103904-1.png||height="131" width="711"]]
278 +== 1.12 Mechanical ==
261 261  
262 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263 263  
264 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
281 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
265 265  
266 -(% style="color:blue" %)**Frequency Band**:
267 267  
268 -0x01: EU868
284 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
269 269  
270 -0x02: US915
271 271  
272 -0x03: IN865
287 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
273 273  
274 -0x04: AU915
275 275  
276 -0x05: KZ865
290 +(% style="color:blue" %)**Probe Mechanical:**
277 277  
278 -0x06: RU864
292 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
279 279  
280 -0x07: AS923
281 281  
282 -0x08: AS923-1
295 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
283 283  
284 -0x09: AS923-2
285 285  
286 -0x0a: AS923-3
298 += 2. Configure DDS20-LB to connect to LoRaWAN network =
287 287  
288 -0x0b: CN470
300 +== 2.1 How it works ==
289 289  
290 -0x0c: EU433
291 291  
292 -0x0d: KR920
303 +The DDS45-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS45-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
293 293  
294 -0x0e: MA869
305 +(% style="display:none" %) (%%)
295 295  
296 -(% style="color:blue" %)**Sub-Band**:
307 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
297 297  
298 -AU915 and US915:value 0x00 ~~ 0x08
299 299  
300 -CN470: value 0x0B ~~ 0x0C
310 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
301 301  
302 -Other Bands: Always 0x00
312 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
303 303  
304 -(% style="color:blue" %)**Battery Info**:
314 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
305 305  
306 -Check the battery voltage.
307 307  
308 -Ex1: 0x0B45 = 2885mV
317 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS45-LB.
309 309  
310 -Ex2: 0x0B49 = 2889mV
319 +Each DDS45-LB is shipped with a sticker with the default device EUI as below:
311 311  
321 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
312 312  
313 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
314 314  
324 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
315 315  
316 -(((
317 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
318 318  
319 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
327 +(% style="color:blue" %)**Register the device**
320 320  
321 -Uplink Payload totals 11 bytes.
322 -)))
329 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
323 323  
324 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 -**Size(bytes)**
327 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 -[[Message Type>>||anchor="HMessageType"]]
334 -)))
335 335  
336 -[[image:image-20230805104104-2.png||height="136" width="754"]]
332 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
337 337  
334 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
338 338  
339 -==== (% style="color:blue" %)**Battery Info**(%%) ====
340 340  
337 +(% style="color:blue" %)**Add APP EUI in the application**
341 341  
342 -Check the battery voltage for LDS12-LB.
343 343  
344 -Ex1: 0x0B45 = 2885mV
340 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
345 345  
346 -Ex2: 0x0B49 = 2889mV
347 347  
343 +(% style="color:blue" %)**Add APP KEY**
348 348  
349 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
345 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
350 350  
351 351  
352 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
348 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS45-LB
353 353  
354 354  
355 -**Example**:
351 +Press the button for 5 seconds to activate the DDS45-LB.
356 356  
357 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
353 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
358 358  
359 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
355 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
360 360  
361 361  
362 -==== (% style="color:blue" %)**Distance**(%%) ====
358 +== 2.3  ​Uplink Payload ==
363 363  
364 364  
365 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
361 +(((
362 +DDS45-LB will uplink payload via LoRaWAN with below payload format: 
363 +)))
366 366  
365 +(((
366 +Uplink payload includes in total 8 bytes.
367 +)))
367 367  
368 -**Example**:
369 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
370 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
371 +**Size(bytes)**
372 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
373 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
374 +[[Distance>>||anchor="H2.3.2A0Distance"]]
375 +(unit: mm)
376 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
377 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
378 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
369 369  
370 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
371 371  
372 372  
373 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
383 +=== 2.3.1  Battery Info ===
374 374  
375 375  
376 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
386 +Check the battery voltage for DDS45-LB.
377 377  
388 +Ex1: 0x0B45 = 2885mV
378 378  
379 -**Example**:
390 +Ex2: 0x0B49 = 2889mV
380 380  
381 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382 382  
383 -Customers can judge whether they need to adjust the environment based on the signal strength.
393 +=== 2.3.2  Distance ===
384 384  
385 385  
386 -**1) When the sensor detects valid data:**
396 +(((
397 +Get the distance. Flat object range 30mm - 4500mm.
398 +)))
387 387  
388 -[[image:image-20230805155335-1.png||height="145" width="724"]]
400 +(((
401 +For example, if the data you get from the register is **0x0B 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
389 389  
403 +(% style="color:blue" %)**0B05(H) = 2821 (D) = 2821 mm.**
404 +)))
390 390  
391 -**2) When the sensor detects invalid data:**
406 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
407 +* If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.
392 392  
393 -[[image:image-20230805155428-2.png||height="139" width="726"]]
409 +=== 2.3.3  Interrupt Pin ===
394 394  
395 395  
396 -**3) When the sensor is not connected:**
397 -
398 -[[image:image-20230805155515-3.png||height="143" width="725"]]
399 -
400 -
401 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
402 -
403 -
404 404  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
405 405  
406 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
407 -
408 408  **Example:**
409 409  
410 -If byte[0]&0x01=0x00 : Normal uplink packet.
416 +0x00: Normal uplink packet.
411 411  
412 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
418 +0x01: Interrupt Uplink Packet.
413 413  
414 414  
415 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
421 +=== 2.3.4  DS18B20 Temperature sensor ===
416 416  
417 417  
418 -Characterize the internal temperature value of the sensor.
424 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
419 419  
420 -**Example: **
421 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
422 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
426 +**Example**:
423 423  
428 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
424 424  
425 -==== (% style="color:blue" %)**Message Type**(%%) ====
430 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
426 426  
427 427  
433 +=== 2.3.5  Sensor Flag ===
434 +
435 +
428 428  (((
429 -For a normal uplink payload, the message type is always 0x01.
437 +0x01: Detect Ultrasonic Sensor
430 430  )))
431 431  
432 432  (((
433 -Valid Message Type:
441 +0x00: No Ultrasonic Sensor
434 434  )))
435 435  
436 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
437 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
438 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
439 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
440 440  
441 -[[image:image-20230805150315-4.png||height="233" width="723"]]
445 +=== 2.3.6  Decode payload in The Things Network ===
442 442  
443 443  
444 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
448 +While using TTN network, you can add the payload format to decode the payload.
445 445  
450 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
446 446  
447 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
452 +The payload decoder function for TTN V3 is here:
448 448  
449 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
450 -
451 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
452 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
453 -**Size(bytes)**
454 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
455 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
456 -Reserve(0xFF)
457 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
458 -LiDAR temp
459 -)))|(% style="width:85px" %)Unix TimeStamp
460 -
461 -**Interrupt flag & Interrupt level:**
462 -
463 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
464 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
465 -**Size(bit)**
466 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
467 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
468 -Interrupt flag
454 +(((
455 +DDS45-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
469 469  )))
470 470  
471 -* (((
472 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
473 -)))
474 474  
475 -For example, in the US915 band, the max payload for different DR is:
459 +== 2.4  Uplink Interval ==
476 476  
477 -**a) DR0:** max is 11 bytes so one entry of data
478 478  
479 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
462 +The DDS45-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
480 480  
481 -**c) DR2:** total payload includes 11 entries of data
482 482  
483 -**d) DR3:** total payload includes 22 entries of data.
465 +== 2.5  ​Show Data in DataCake IoT Server ==
484 484  
485 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
486 486  
487 -
488 -**Downlink:**
489 -
490 -0x31 64 CC 68 0C 64 CC 69 74 05
491 -
492 -[[image:image-20230805144936-2.png||height="113" width="746"]]
493 -
494 -**Uplink:**
495 -
496 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
497 -
498 -
499 -**Parsed Value:**
500 -
501 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
502 -
503 -
504 -[360,176,30,High,True,2023-08-04 02:53:00],
505 -
506 -[355,168,30,Low,False,2023-08-04 02:53:29],
507 -
508 -[245,211,30,Low,False,2023-08-04 02:54:29],
509 -
510 -[57,700,30,Low,False,2023-08-04 02:55:29],
511 -
512 -[361,164,30,Low,True,2023-08-04 02:56:00],
513 -
514 -[337,184,30,Low,False,2023-08-04 02:56:40],
515 -
516 -[20,4458,30,Low,False,2023-08-04 02:57:40],
517 -
518 -[362,173,30,Low,False,2023-08-04 02:58:53],
519 -
520 -
521 -**History read from serial port:**
522 -
523 -[[image:image-20230805145056-3.png]]
524 -
525 -
526 -=== 2.3.4 Decode payload in The Things Network ===
527 -
528 -
529 -While using TTN network, you can add the payload format to decode the payload.
530 -
531 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
532 -
533 -
534 534  (((
535 -The payload decoder function for TTN is here:
536 -)))
537 -
538 -(((
539 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
540 -)))
541 -
542 -
543 -== 2.4 ​Show Data in DataCake IoT Server ==
544 -
545 -
546 -(((
547 547  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
548 548  )))
549 549  
... ... @@ -565,7 +565,7 @@
565 565  
566 566  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
567 567  
568 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
490 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS45-LB and add DevEUI.**
569 569  
570 570  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
571 571  
... ... @@ -575,22 +575,23 @@
575 575  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
576 576  
577 577  
578 -== 2.5 Datalog Feature ==
579 579  
501 +== 2.6 Datalog Feature ==
580 580  
581 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
582 582  
504 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS45-LB will store the reading for future retrieving purposes.
583 583  
584 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
585 585  
507 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
586 586  
587 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
588 588  
510 +Set PNACKMD=1, DDS45-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS45-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
511 +
589 589  * (((
590 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
513 +a) DDS45-LB will do an ACK check for data records sending to make sure every data arrive server.
591 591  )))
592 592  * (((
593 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
516 +b) DDS45-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS45-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS45-LB gets a ACK, DDS45-LB will consider there is a network connection and resend all NONE-ACK messages.
594 594  )))
595 595  
596 596  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -598,10 +598,10 @@
598 598  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
599 599  
600 600  
601 -=== 2.5.2 Unix TimeStamp ===
524 +=== 2.6.2 Unix TimeStamp ===
602 602  
603 603  
604 -LDS12-LB uses Unix TimeStamp format based on
527 +DDS45-LB uses Unix TimeStamp format based on
605 605  
606 606  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
607 607  
... ... @@ -615,23 +615,23 @@
615 615  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
616 616  
617 617  
618 -=== 2.5.3 Set Device Time ===
541 +=== 2.6.3 Set Device Time ===
619 619  
620 620  
621 621  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
622 622  
623 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
546 +Once DDS45-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS45-LB. If DDS45-LB fails to get the time from the server, DDS45-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
624 624  
625 625  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
626 626  
627 627  
628 -=== 2.5.4 Poll sensor value ===
551 +=== 2.6.4 Poll sensor value ===
629 629  
630 630  
631 631  Users can poll sensor values based on timestamps. Below is the downlink command.
632 632  
633 633  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
634 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
557 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
635 635  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
636 636  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
637 637  
... ... @@ -648,110 +648,24 @@
648 648  )))
649 649  
650 650  (((
651 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
574 +Uplink Internal =5s,means DDS45-LB will send one packet every 5s. range 5~~255s.
652 652  )))
653 653  
654 654  
655 -== 2.6 Frequency Plans ==
578 +== 2.7 Frequency Plans ==
656 656  
657 657  
658 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
581 +The DDS45-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
659 659  
660 660  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
661 661  
662 662  
663 -== 2.7 LiDAR ToF Measurement ==
586 += 3. Configure DDS45-LB =
664 664  
665 -=== 2.7.1 Principle of Distance Measurement ===
666 -
667 -
668 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
669 -
670 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
671 -
672 -
673 -=== 2.7.2 Distance Measurement Characteristics ===
674 -
675 -
676 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
677 -
678 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
679 -
680 -
681 -(((
682 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
683 -)))
684 -
685 -(((
686 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
687 -)))
688 -
689 -(((
690 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
691 -)))
692 -
693 -
694 -(((
695 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
696 -)))
697 -
698 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
699 -
700 -(((
701 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
702 -)))
703 -
704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
705 -
706 -(((
707 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
708 -)))
709 -
710 -
711 -=== 2.7.3 Notice of usage ===
712 -
713 -
714 -Possible invalid /wrong reading for LiDAR ToF tech:
715 -
716 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
717 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
718 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
719 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
720 -
721 -
722 -=== 2.7.4  Reflectivity of different objects ===
723 -
724 -
725 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
726 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
727 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
728 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
729 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
730 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
731 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
732 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
733 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
734 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
735 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
736 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
737 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
738 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
739 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
740 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
741 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
742 -Unpolished white metal surface
743 -)))|(% style="width:93px" %)130%
744 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
745 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
746 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
747 -
748 -
749 -= 3. Configure LDS12-LB =
750 -
751 751  == 3.1 Configure Methods ==
752 752  
753 753  
754 -LDS12-LB supports below configure method:
591 +DDS45-LB supports below configure method:
755 755  
756 756  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
757 757  
... ... @@ -759,7 +759,6 @@
759 759  
760 760  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
761 761  
762 -
763 763  == 3.2 General Commands ==
764 764  
765 765  
... ... @@ -774,10 +774,10 @@
774 774  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
775 775  
776 776  
777 -== 3.3 Commands special design for LDS12-LB ==
613 +== 3.3 Commands special design for DDS45-LB ==
778 778  
779 779  
780 -These commands only valid for LDS12-LB, as below:
616 +These commands only valid for DDS45-LB, as below:
781 781  
782 782  
783 783  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -792,7 +792,7 @@
792 792  )))
793 793  
794 794  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
795 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
631 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
796 796  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
797 797  30000
798 798  OK
... ... @@ -820,32 +820,25 @@
820 820  )))
821 821  * (((
822 822  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
823 -
824 -
825 -
826 826  )))
827 827  
828 828  === 3.3.2 Set Interrupt Mode ===
829 829  
830 830  
831 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
664 +Feature, Set Interrupt mode for PA8 of pin.
832 832  
833 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
666 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
834 834  
835 835  (% style="color:blue" %)**AT Command: AT+INTMOD**
836 836  
837 837  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
838 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
839 839  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
840 840  0
841 841  OK
842 842  the mode is 0 =Disable Interrupt
843 843  )))
844 -|(% style="width:154px" %)(((
845 -AT+INTMOD=2
846 -
847 -(default)
848 -)))|(% style="width:196px" %)(((
677 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
849 849  Set Transmit Interval
850 850  0. (Disable Interrupt),
851 851  ~1. (Trigger by rising and falling edge)
... ... @@ -863,107 +863,97 @@
863 863  
864 864  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
865 865  
695 += 4. Battery & Power Consumption =
866 866  
867 -=== 3.3.3  Set Power Output Duration ===
868 868  
869 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
698 +DDS45-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
870 870  
871 -~1. first enable the power output to external sensor,
700 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
872 872  
873 -2. keep it on as per duration, read sensor value and construct uplink payload
874 874  
875 -3. final, close the power output.
703 += 5. OTA Firmware update =
876 876  
877 -(% style="color:blue" %)**AT Command: AT+3V3T**
878 878  
879 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
880 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
881 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
882 -OK
883 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
884 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
885 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
706 +(% class="wikigeneratedid" %)
707 +User can change firmware DDS45-LB to:
886 886  
887 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
888 -Format: Command Code (0x07) followed by 3 bytes.
709 +* Change Frequency band/ region.
889 889  
890 -The first byte is 01,the second and third bytes are the time to turn on.
711 +* Update with new features.
891 891  
892 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
893 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
894 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
713 +* Fix bugs.
895 895  
715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/a5ue0nfrzqy9nz6/AABbvlATosDJKDwBmbirVbMYa?dl=0]]**
896 896  
897 -= 4. Battery & Power Consumption =
717 +Methods to Update Firmware:
898 898  
719 +* (Recommanded way) OTA firmware update via wireless:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
899 899  
900 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
721 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
901 901  
902 -[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
723 += 6. FAQ =
903 903  
725 +== 6.1  What is the frequency plan for DDS45-LB? ==
904 904  
905 -= 5. OTA Firmware update =
906 906  
728 +DDS45-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
907 907  
908 -(% class="wikigeneratedid" %)
909 -User can change firmware LDS12-LB to:
910 910  
911 -* Change Frequency band/ region.
731 +== 6.2  Can I use DDS45-LB in condensation environment? ==
912 912  
913 -* Update with new features.
914 914  
915 -* Fix bugs.
734 +DDS45-LB is not suitable to be used in condensation environment. Condensation on the DDS45-LB probe will affect the reading and always got 0.
916 916  
917 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
918 918  
919 -Methods to Update Firmware:
737 += 7.  Trouble Shooting =
920 920  
921 -* (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
739 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
922 922  
923 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
924 924  
742 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
925 925  
926 -= 6. FAQ =
927 927  
928 -== 6.1 What is the frequency plan for LDS12-LB? ==
745 +== 7. AT Command input doesn't work ==
929 929  
930 930  
931 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
748 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
932 932  
933 933  
934 -= 7. Trouble Shooting =
751 +== 7.3  Why does the sensor reading show 0 or "No sensor" ==
935 935  
936 -== 7.1 AT Command input doesn't work ==
937 937  
754 +~1. The measurement object is very close to the sensor, but in the blind spot of the sensor.
938 938  
939 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
756 +2. Sensor wiring is disconnected
940 940  
758 +3. Not using the correct decoder
941 941  
942 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
943 943  
761 +== 7.4  Abnormal readings The gap between multiple readings is too large or the gap between the readings and the actual value is too large ==
944 944  
945 -(((
946 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
947 -)))
948 948  
949 -(((
950 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
951 -)))
764 +1) Please check if there is something on the probe affecting its measurement (condensed water, volatile oil, etc.)
952 952  
766 +2) Does it change with temperature, temperature will affect its measurement
953 953  
954 -(((
955 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
956 -)))
768 +3) If abnormal data occurs, you can turn on DEBUG mode, Please use downlink or AT COMMAN to enter DEBUG mode.
957 957  
958 -(((
959 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
960 -)))
770 +downlink command: (% style="color:blue" %)**F1 01**(%%), AT command: (% style="color:blue" %)**AT+DDEBUG=1**
961 961  
772 +4) After entering the debug mode, it will send 20 pieces of data at a time, and you can send its uplink to us for analysis
962 962  
774 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20230113135125-2.png?width=1057&height=136&rev=1.1||alt="image-20230113135125-2.png"]]
775 +
776 +
777 +Its original payload will be longer than other data. Even though it is being parsed, it can be seen that it is abnormal data.
778 +
779 +Please send the data to us for check.
780 +
781 +
963 963  = 8. Order Info =
964 964  
965 965  
966 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
785 +Part Number: (% style="color:blue" %)**DDS45-LB-XXX**
967 967  
968 968  (% style="color:red" %)**XXX**(%%): **The default frequency band**
969 969  
... ... @@ -983,13 +983,12 @@
983 983  
984 984  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
985 985  
986 -
987 987  = 9. ​Packing Info =
988 988  
989 989  
990 990  (% style="color:#037691" %)**Package Includes**:
991 991  
992 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
810 +* DDS45-LB LoRaWAN Distance Detection Sensor x 1
993 993  
994 994  (% style="color:#037691" %)**Dimension and weight**:
995 995  
... ... @@ -1001,7 +1001,6 @@
1001 1001  
1002 1002  * Weight / pcs : g
1003 1003  
1004 -
1005 1005  = 10. Support =
1006 1006  
1007 1007  
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content