Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 11 removed)
Details
- Page properties
-
- Content
-
... ... @@ -35,7 +35,7 @@ 35 35 36 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-2023061 5152941-1.png||height="459" width="800"]]38 +[[image:image-20230614162334-2.png||height="468" width="800"]] 39 39 40 40 41 41 == 1.2 Features == ... ... @@ -54,8 +54,6 @@ 54 54 * Downlink to change configure 55 55 * 8500mAh Battery for long term use 56 56 57 - 58 - 59 59 == 1.3 Specification == 60 60 61 61 ... ... @@ -101,24 +101,135 @@ 101 101 * Sleep Mode: 5uA @ 3.3v 102 102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 103 103 102 +== 1.4 Suitable Container & Liquid == 104 104 105 105 106 -== 1.4 Applications == 105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc. 106 +* Container shape is regular, and surface is smooth. 107 +* Container Thickness: 108 +** Pure metal material. 2~~8mm, best is 3~~5mm 109 +** Pure non metal material: <10 mm 110 +* Pure liquid without irregular deposition. 107 107 112 +(% style="display:none" %) 108 108 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 114 +== 1.5 Install LDS12-LB == 116 116 117 117 117 +(% style="color:blue" %)**Step 1**(%%): ** Choose the installation point.** 118 118 119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position. 120 + 121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]] 122 + 123 + 124 +((( 125 +(% style="color:blue" %)**Step 2**(%%): **Polish the installation point.** 126 +))) 127 + 128 +((( 129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth. 130 +))) 131 + 132 +[[image:image-20230613143052-5.png]] 133 + 134 + 135 +No polish needed if the container is shine metal surface without paint or non-metal container. 136 + 137 +[[image:image-20230613143125-6.png]] 138 + 139 + 140 +((( 141 +(% style="color:blue" %)**Step3: **(%%)**Test the installation point.** 142 +))) 143 + 144 +((( 145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point. 146 +))) 147 + 148 +((( 149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level. 150 +))) 151 + 152 +((( 153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life. 154 +))) 155 + 156 + 157 +((( 158 +(% style="color:blue" %)**LED Status:** 159 +))) 160 + 161 +* ((( 162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well. 163 +))) 164 + 165 +* ((( 166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point. 167 +))) 168 +* ((( 169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good. 170 +))) 171 + 172 +((( 173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that. 174 +))) 175 + 176 + 177 +((( 178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 179 +))) 180 + 181 + 182 +((( 183 +(% style="color:blue" %)**Step4: **(%%)**Install use Epoxy ab glue.** 184 +))) 185 + 186 +((( 187 +Prepare Eproxy AB glue. 188 +))) 189 + 190 +((( 191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point. 192 +))) 193 + 194 +((( 195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking. 196 +))) 197 + 198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]] 199 + 200 + 201 +((( 202 +(% style="color:red" %)**Note :** 203 + 204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position. 205 +))) 206 + 207 +((( 208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally. 209 +))) 210 + 211 + 212 +== 1.6 Applications == 213 + 214 + 215 +* Smart liquid control solution 216 + 217 +* Smart liquefied gas solution 218 + 219 +== 1.7 Precautions == 220 + 221 + 222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights. 223 + 224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container. 225 + 226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable. 227 + 119 119 (% style="display:none" %) 120 120 121 -== 1. 5Sleep mode and working mode ==230 +== 1.8 Sleep mode and working mode == 122 122 123 123 124 124 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. ... ... @@ -126,7 +126,7 @@ 126 126 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 127 128 128 129 -== 1. 6Button & LEDs ==238 +== 1.9 Button & LEDs == 130 130 131 131 132 132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] ... ... @@ -133,7 +133,7 @@ 133 133 134 134 135 135 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**245 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 137 137 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 138 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 139 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -145,11 +145,9 @@ 145 145 ))) 146 146 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 147 257 +== 1.10 BLE connection == 148 148 149 149 150 -== 1.7 BLE connection == 151 - 152 - 153 153 LDS12-LB support BLE remote configure. 154 154 155 155 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -161,12 +161,12 @@ 161 161 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 162 162 163 163 164 -== 1. 8Pin Definitions ==271 +== 1.11 Pin Definitions == 165 165 273 +[[image:image-20230523174230-1.png]] 166 166 167 -[[image:image-20230805144259-1.png||height="413" width="741"]] 168 168 169 -== 1. 9Mechanical ==276 +== 1.12 Mechanical == 170 170 171 171 172 172 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] ... ... @@ -181,6 +181,7 @@ 181 181 (% style="color:blue" %)**Probe Mechanical:** 182 182 183 183 291 + 184 184 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 185 185 186 186 ... ... @@ -200,7 +200,7 @@ 200 200 201 201 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 202 202 203 -[[image:image-2023061 5153004-2.png||height="459" width="800"]](% style="display:none" %)311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %) 204 204 205 205 206 206 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB. ... ... @@ -244,118 +244,75 @@ 244 244 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 245 245 246 246 247 -== 2.3 Uplink Payload == 355 +== 2.3 Uplink Payload == 248 248 249 -=== 2.3.1 Device Status, FPORT~=5 === 250 250 358 +((( 359 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 360 +))) 251 251 252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server. 362 +((( 363 +Uplink payload includes in total 8 bytes. 364 +))) 253 253 254 -The Payload format is as below. 255 - 256 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 257 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)((( 258 258 **Size(bytes)** 259 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2** 260 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT 369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 371 +[[Distance>>||anchor="H2.3.2A0Distance"]] 372 +(unit: mm) 373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|((( 374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]] 375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]] 261 261 262 - ExampleparseTTNv3377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]] 263 263 264 -[[image:image-20230805103904-1.png||height="131" width="711"]] 265 265 266 - (%style="color:blue"%)**SensorModel**(%%): For LDS12-LB, this value is 0x24380 +=== 2.3.1 Battery Info === 267 267 268 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 269 269 270 - (%style="color:blue"%)**FrequencyBand**:383 +Check the battery voltage for LDS12-LB. 271 271 272 -0x01: EU868 273 - 274 -0x02: US915 275 - 276 -0x03: IN865 277 - 278 -0x04: AU915 279 - 280 -0x05: KZ865 281 - 282 -0x06: RU864 283 - 284 -0x07: AS923 285 - 286 -0x08: AS923-1 287 - 288 -0x09: AS923-2 289 - 290 -0x0a: AS923-3 291 - 292 -0x0b: CN470 293 - 294 -0x0c: EU433 295 - 296 -0x0d: KR920 297 - 298 -0x0e: MA869 299 - 300 -(% style="color:blue" %)**Sub-Band**: 301 - 302 -AU915 and US915:value 0x00 ~~ 0x08 303 - 304 -CN470: value 0x0B ~~ 0x0C 305 - 306 -Other Bands: Always 0x00 307 - 308 -(% style="color:blue" %)**Battery Info**: 309 - 310 -Check the battery voltage. 311 - 312 312 Ex1: 0x0B45 = 2885mV 313 313 314 314 Ex2: 0x0B49 = 2889mV 315 315 316 316 317 -=== 2.3.2 UplinkPayload, FPORT~=2===390 +=== 2.3.2 Distance === 318 318 319 319 320 320 ((( 321 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will: 394 +Get the distance. Flat object range 20mm - 2000mm. 395 +))) 322 322 323 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 397 +((( 398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** ** 324 324 325 - UplinkPayload totals11bytes.400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.** 326 326 ))) 327 327 328 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 329 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 330 -**Size(bytes)** 331 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1** 332 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)((( 333 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]] 334 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)((( 335 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]] 336 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)((( 337 -[[Message Type>>||anchor="HMessageType"]] 338 -))) 403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor. 339 339 340 - [[image:image-20230805104104-2.png||height="136"width="754"]]405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid. 341 341 407 +=== 2.3.3 Interrupt Pin === 342 342 343 -==== (% style="color:blue" %)**Battery Info**(%%) ==== 344 344 410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 345 345 346 - Check the battery voltagefor LDS12-LB.412 +**Example:** 347 347 348 - Ex1:0x0B45= 2885mV414 +0x00: Normal uplink packet. 349 349 350 - Ex2:0x0B49=2889mV416 +0x01: Interrupt Uplink Packet. 351 351 352 352 353 -=== =(%style="color:blue" %)**DS18B20 Temperature sensor**(%%)====419 +=== 2.3.4 DS18B20 Temperature sensor === 354 354 355 355 356 356 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 357 357 358 - 359 359 **Example**: 360 360 361 361 If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -363,191 +363,42 @@ 363 363 If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 364 364 365 365 366 -=== =(%style="color:blue"%)**Distance**(%%)====431 +=== 2.3.5 Sensor Flag === 367 367 368 368 369 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 370 - 371 - 372 -**Example**: 373 - 374 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 375 - 376 - 377 -==== (% style="color:blue" %)**Distance signal strength**(%%) ==== 378 - 379 - 380 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 381 - 382 - 383 -**Example**: 384 - 385 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 386 - 387 -Customers can judge whether they need to adjust the environment based on the signal strength. 388 - 389 - 390 -**1) When the sensor detects valid data:** 391 - 392 -[[image:image-20230805155335-1.png||height="145" width="724"]] 393 - 394 - 395 -**2) When the sensor detects invalid data:** 396 - 397 -[[image:image-20230805155428-2.png||height="139" width="726"]] 398 - 399 - 400 -**3) When the sensor is not connected:** 401 - 402 -[[image:image-20230805155515-3.png||height="143" width="725"]] 403 - 404 - 405 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ==== 406 - 407 - 408 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. 409 - 410 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI . 411 - 412 -**Example:** 413 - 414 -If byte[0]&0x01=0x00 : Normal uplink packet. 415 - 416 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet. 417 - 418 - 419 -==== (% style="color:blue" %)**LiDAR temp**(%%) ==== 420 - 421 - 422 -Characterize the internal temperature value of the sensor. 423 - 424 -**Example: ** 425 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 426 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 427 - 428 - 429 -==== (% style="color:blue" %)**Message Type**(%%) ==== 430 - 431 - 432 432 ((( 433 - Fora normal uplink payload, themessagetypeis always0x01.435 +0x01: Detect Ultrasonic Sensor 434 434 ))) 435 435 436 436 ((( 437 - ValidMessage Type:439 +0x00: No Ultrasonic Sensor 438 438 ))) 439 439 440 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %) 441 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload** 442 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload 443 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload 444 444 445 - [[image:image-20230805150315-4.png||height="233"width="723"]]443 +=== 2.3.6 Decode payload in The Things Network === 446 446 447 447 448 - === 2.3.3 Historicalmeasuringdistance,FPORT~=3===446 +While using TTN network, you can add the payload format to decode the payload. 449 449 448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]] 450 450 451 - LDS12-LB storessensor valuesanduserscan retrievethese historyvaluesviathe [[downlinkcommand>>||anchor="H2.5.4Pollsensorvalue"]].450 +The payload decoder function for TTN V3 is here: 452 452 453 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 454 - 455 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 456 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 457 -**Size(bytes)** 458 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4 459 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)((( 460 -Reserve(0xFF) 461 -)))|Distance|Distance signal strength|(% style="width:88px" %)((( 462 -LiDAR temp 463 -)))|(% style="width:85px" %)Unix TimeStamp 464 - 465 -**Interrupt flag & Interrupt level:** 466 - 467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %) 468 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( 469 -**Size(bit)** 470 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0** 471 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)((( 472 -Interrupt flag 452 +((( 453 +LDS12-LB TTN V3 Payload Decoder: [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 473 473 ))) 474 474 475 -* ((( 476 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands. 477 -))) 478 478 479 - Forexample,inthe US915 band,themax payloadfor different DR is:457 +== 2.4 Uplink Interval == 480 480 481 -**a) DR0:** max is 11 bytes so one entry of data 482 482 483 - **b)DR1:** maxis53 bytesso deviceswillupload4entriesof data(total 44 bytes)460 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]] 484 484 485 -**c) DR2:** total payload includes 11 entries of data 486 486 487 - **d)DR3:**totalpayloadincludes22entriesof data.463 +== 2.5 Show Data in DataCake IoT Server == 488 488 489 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0 490 490 491 - 492 -**Downlink:** 493 - 494 -0x31 64 CC 68 0C 64 CC 69 74 05 495 - 496 -[[image:image-20230805144936-2.png||height="113" width="746"]] 497 - 498 -**Uplink:** 499 - 500 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D 501 - 502 - 503 -**Parsed Value:** 504 - 505 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME] 506 - 507 - 508 -[360,176,30,High,True,2023-08-04 02:53:00], 509 - 510 -[355,168,30,Low,False,2023-08-04 02:53:29], 511 - 512 -[245,211,30,Low,False,2023-08-04 02:54:29], 513 - 514 -[57,700,30,Low,False,2023-08-04 02:55:29], 515 - 516 -[361,164,30,Low,True,2023-08-04 02:56:00], 517 - 518 -[337,184,30,Low,False,2023-08-04 02:56:40], 519 - 520 -[20,4458,30,Low,False,2023-08-04 02:57:40], 521 - 522 -[362,173,30,Low,False,2023-08-04 02:58:53], 523 - 524 - 525 -**History read from serial port:** 526 - 527 -[[image:image-20230805145056-3.png]] 528 - 529 - 530 -=== 2.3.4 Decode payload in The Things Network === 531 - 532 - 533 -While using TTN network, you can add the payload format to decode the payload. 534 - 535 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]] 536 - 537 - 538 538 ((( 539 -The payload decoder function for TTN is here: 540 -))) 541 - 542 -((( 543 -LDS12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 544 -))) 545 - 546 - 547 -== 2.4 Show Data in DataCake IoT Server == 548 - 549 - 550 -((( 551 551 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 552 552 ))) 553 553 ... ... @@ -579,13 +579,13 @@ 579 579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]] 580 580 581 581 582 -== 2. 5Datalog Feature ==498 +== 2.6 Datalog Feature == 583 583 584 584 585 585 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes. 586 586 587 587 588 -=== 2. 5.1 Ways to get datalog via LoRaWAN ===504 +=== 2.6.1 Ways to get datalog via LoRaWAN === 589 589 590 590 591 591 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. ... ... @@ -602,7 +602,7 @@ 602 602 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 603 603 604 604 605 -=== 2. 5.2 Unix TimeStamp ===521 +=== 2.6.2 Unix TimeStamp === 606 606 607 607 608 608 LDS12-LB uses Unix TimeStamp format based on ... ... @@ -619,7 +619,7 @@ 619 619 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 620 620 621 621 622 -=== 2. 5.3 Set Device Time ===538 +=== 2.6.3 Set Device Time === 623 623 624 624 625 625 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. ... ... @@ -629,13 +629,13 @@ 629 629 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 630 630 631 631 632 -=== 2. 5.4 Poll sensor value ===548 +=== 2.6.4 Poll sensor value === 633 633 634 634 635 635 Users can poll sensor values based on timestamps. Below is the downlink command. 636 636 637 637 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %) 638 -|(% colspan="4" style="background-color:# 4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)** 639 639 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte** 640 640 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval 641 641 ... ... @@ -656,7 +656,7 @@ 656 656 ))) 657 657 658 658 659 -== 2. 6Frequency Plans ==575 +== 2.7 Frequency Plans == 660 660 661 661 662 662 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. ... ... @@ -664,94 +664,6 @@ 664 664 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 665 665 666 666 667 -== 2.7 LiDAR ToF Measurement == 668 - 669 -=== 2.7.1 Principle of Distance Measurement === 670 - 671 - 672 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 673 - 674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 675 - 676 - 677 -=== 2.7.2 Distance Measurement Characteristics === 678 - 679 - 680 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 681 - 682 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 683 - 684 - 685 -((( 686 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 687 -))) 688 - 689 -((( 690 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 691 -))) 692 - 693 -((( 694 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 695 -))) 696 - 697 - 698 -((( 699 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 700 -))) 701 - 702 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 703 - 704 -((( 705 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 706 -))) 707 - 708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 709 - 710 -((( 711 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 712 -))) 713 - 714 - 715 -=== 2.7.3 Notice of usage === 716 - 717 - 718 -Possible invalid /wrong reading for LiDAR ToF tech: 719 - 720 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 721 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 722 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 723 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 724 - 725 - 726 - 727 -=== 2.7.4 Reflectivity of different objects === 728 - 729 - 730 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 731 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 732 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 733 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 734 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 735 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 736 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 737 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 738 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 739 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 740 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 741 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 742 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 743 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 744 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 745 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 746 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 747 -Unpolished white metal surface 748 -)))|(% style="width:93px" %)130% 749 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 750 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 751 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 752 - 753 - 754 - 755 755 = 3. Configure LDS12-LB = 756 756 757 757 == 3.1 Configure Methods == ... ... @@ -765,8 +765,6 @@ 765 765 766 766 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 767 767 768 - 769 - 770 770 == 3.2 General Commands == 771 771 772 772 ... ... @@ -799,7 +799,7 @@ 799 799 ))) 800 800 801 801 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 802 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response** 803 803 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 804 804 30000 805 805 OK ... ... @@ -835,24 +835,20 @@ 835 835 === 3.3.2 Set Interrupt Mode === 836 836 837 837 838 -Feature, Set Interrupt mode for pinofGPIO_EXTI.664 +Feature, Set Interrupt mode for PA8 of pin. 839 839 840 -When AT+INTMOD=0 is set, GPIO_EXTIis used as a digital input port.666 +When AT+INTMOD=0 is set, PA8 is used as a digital input port. 841 841 842 842 (% style="color:blue" %)**AT Command: AT+INTMOD** 843 843 844 844 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 845 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 846 846 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 847 847 0 848 848 OK 849 849 the mode is 0 =Disable Interrupt 850 850 ))) 851 -|(% style="width:154px" %)((( 852 -AT+INTMOD=2 853 - 854 -(default) 855 -)))|(% style="width:196px" %)((( 677 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 856 856 Set Transmit Interval 857 857 0. (Disable Interrupt), 858 858 ~1. (Trigger by rising and falling edge) ... ... @@ -870,39 +870,6 @@ 870 870 871 871 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 872 872 873 - 874 - 875 -=== 3.3.3 Set Power Output Duration === 876 - 877 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 878 - 879 -~1. first enable the power output to external sensor, 880 - 881 -2. keep it on as per duration, read sensor value and construct uplink payload 882 - 883 -3. final, close the power output. 884 - 885 -(% style="color:blue" %)**AT Command: AT+3V3T** 886 - 887 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 888 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 889 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 890 -OK 891 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 892 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 893 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 894 - 895 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 896 -Format: Command Code (0x07) followed by 3 bytes. 897 - 898 -The first byte is 01,the second and third bytes are the time to turn on. 899 - 900 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 901 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 902 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 903 - 904 - 905 - 906 906 = 4. Battery & Power Consumption = 907 907 908 908 ... ... @@ -923,7 +923,7 @@ 923 923 924 924 * Fix bugs. 925 925 926 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]** 927 927 928 928 Methods to Update Firmware: 929 929 ... ... @@ -931,8 +931,6 @@ 931 931 932 932 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 933 933 934 - 935 - 936 936 = 6. FAQ = 937 937 938 938 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -953,11 +953,11 @@ 953 953 954 954 955 955 ((( 956 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance .(such as glass and water, etc.)743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.) 957 957 ))) 958 958 959 959 ((( 960 - (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.747 +Troubleshooting: Please avoid use of this product under such circumstance in practice. 961 961 ))) 962 962 963 963 ... ... @@ -966,7 +966,7 @@ 966 966 ))) 967 967 968 968 ((( 969 - (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter. 970 970 ))) 971 971 972 972 ... ... @@ -993,8 +993,6 @@ 993 993 994 994 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 995 995 996 - 997 - 998 998 = 9. Packing Info = 999 999 1000 1000 ... ... @@ -1012,8 +1012,6 @@ 1012 1012 1013 1013 * Weight / pcs : g 1014 1014 1015 - 1016 - 1017 1017 = 10. Support = 1018 1018 1019 1019
- image-20230615152941-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230615153004-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.9 KB - Content
- image-20230805103904-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.9 KB - Content
- image-20230805104104-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.3 KB - Content
- image-20230805144259-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -872.7 KB - Content
- image-20230805144936-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.5 KB - Content
- image-20230805145056-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.7 KB - Content
- image-20230805150315-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.6 KB - Content
- image-20230805155335-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.4 KB - Content
- image-20230805155428-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.5 KB - Content
- image-20230805155515-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -45.7 KB - Content