Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.11
edited by Xiaoling
on 2023/08/07 09:45
Change comment: There is no comment for this version
To version 82.3
edited by Xiaoling
on 2023/06/14 16:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -35,7 +35,7 @@
35 35  
36 36  Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230614162334-2.png||height="468" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -54,8 +54,6 @@
54 54  * Downlink to change configure
55 55  * 8500mAh Battery for long term use
56 56  
57 -
58 -
59 59  == 1.3 Specification ==
60 60  
61 61  
... ... @@ -101,24 +101,135 @@
101 101  * Sleep Mode: 5uA @ 3.3v
102 102  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103 103  
102 +== 1.4 Suitable Container & Liquid ==
104 104  
105 105  
106 -== 1.4 Applications ==
105 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
106 +* Container shape is regular, and surface is smooth.
107 +* Container Thickness:
108 +** Pure metal material.  2~~8mm, best is 3~~5mm
109 +** Pure non metal material: <10 mm
110 +* Pure liquid without irregular deposition.
107 107  
112 +(% style="display:none" %)
108 108  
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
114 +== 1.5 Install LDS12-LB ==
116 116  
117 117  
117 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
118 118  
119 +LDS12-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
120 +
121 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
122 +
123 +
124 +(((
125 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
126 +)))
127 +
128 +(((
129 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
130 +)))
131 +
132 +[[image:image-20230613143052-5.png]]
133 +
134 +
135 +No polish needed if the container is shine metal surface without paint or non-metal container.
136 +
137 +[[image:image-20230613143125-6.png]]
138 +
139 +
140 +(((
141 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
142 +)))
143 +
144 +(((
145 +Power on LDS12-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
146 +)))
147 +
148 +(((
149 +It is necessary to put the coupling paste between the sensor and the container, otherwise LDS12-LB won't detect the liquid level.
150 +)))
151 +
152 +(((
153 +After paste the LDS12-LB well, power on LDS12-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
154 +)))
155 +
156 +
157 +(((
158 +(% style="color:blue" %)**LED Status:**
159 +)))
160 +
161 +* (((
162 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
163 +)))
164 +
165 +* (((
166 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
167 +)))
168 +* (((
169 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
170 +)))
171 +
172 +(((
173 +LDS12-LB will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
174 +)))
175 +
176 +
177 +(((
178 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
179 +)))
180 +
181 +
182 +(((
183 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
184 +)))
185 +
186 +(((
187 +Prepare Eproxy AB glue.
188 +)))
189 +
190 +(((
191 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
192 +)))
193 +
194 +(((
195 +Reset LDS12-LB and see if the BLUE LED is slowly blinking.
196 +)))
197 +
198 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
199 +
200 +
201 +(((
202 +(% style="color:red" %)**Note :**
203 +
204 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
205 +)))
206 +
207 +(((
208 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
209 +)))
210 +
211 +
212 +== 1.6 Applications ==
213 +
214 +
215 +* Smart liquid control solution
216 +
217 +* Smart liquefied gas solution
218 +
219 +== 1.7 Precautions ==
220 +
221 +
222 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
223 +
224 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
225 +
226 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
227 +
119 119  (% style="display:none" %)
120 120  
121 -== 1.5 Sleep mode and working mode ==
230 +== 1.8 Sleep mode and working mode ==
122 122  
123 123  
124 124  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
... ... @@ -126,7 +126,7 @@
126 126  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 127  
128 128  
129 -== 1.6 Button & LEDs ==
238 +== 1.9 Button & LEDs ==
130 130  
131 131  
132 132  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -133,7 +133,7 @@
133 133  
134 134  
135 135  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
245 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
137 137  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 138  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 139  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -145,11 +145,9 @@
145 145  )))
146 146  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 147  
257 +== 1.10 BLE connection ==
148 148  
149 149  
150 -== 1.7 BLE connection ==
151 -
152 -
153 153  LDS12-LB support BLE remote configure.
154 154  
155 155  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -161,12 +161,12 @@
161 161  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 162  
163 163  
164 -== 1.8 Pin Definitions ==
271 +== 1.11 Pin Definitions ==
165 165  
273 +[[image:image-20230523174230-1.png]]
166 166  
167 -[[image:image-20230805144259-1.png||height="413" width="741"]]
168 168  
169 -== 1.9 Mechanical ==
276 +== 1.12 Mechanical ==
170 170  
171 171  
172 172  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -181,6 +181,7 @@
181 181  (% style="color:blue" %)**Probe Mechanical:**
182 182  
183 183  
291 +
184 184  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185 185  
186 186  
... ... @@ -200,7 +200,7 @@
200 200  
201 201  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202 202  
203 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
311 +[[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
204 204  
205 205  
206 206  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
... ... @@ -244,118 +244,75 @@
244 244  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245 245  
246 246  
247 -== 2.3 ​Uplink Payload ==
355 +== 2.3  ​Uplink Payload ==
248 248  
249 -=== 2.3.1 Device Status, FPORT~=5 ===
250 250  
358 +(((
359 +LDS12-LB will uplink payload via LoRaWAN with below payload format: 
360 +)))
251 251  
252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
362 +(((
363 +Uplink payload includes in total 8 bytes.
364 +)))
253 253  
254 -The Payload format is as below.
255 -
256 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
257 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
366 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
367 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
258 258  **Size(bytes)**
259 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
260 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
369 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
370 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
371 +[[Distance>>||anchor="H2.3.2A0Distance"]]
372 +(unit: mm)
373 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
374 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
375 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
261 261  
262 -Example parse in TTNv3
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
263 263  
264 -[[image:image-20230805103904-1.png||height="131" width="711"]]
265 265  
266 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
380 +=== 2.3.1  Battery Info ===
267 267  
268 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
269 269  
270 -(% style="color:blue" %)**Frequency Band**:
383 +Check the battery voltage for LDS12-LB.
271 271  
272 -0x01: EU868
273 -
274 -0x02: US915
275 -
276 -0x03: IN865
277 -
278 -0x04: AU915
279 -
280 -0x05: KZ865
281 -
282 -0x06: RU864
283 -
284 -0x07: AS923
285 -
286 -0x08: AS923-1
287 -
288 -0x09: AS923-2
289 -
290 -0x0a: AS923-3
291 -
292 -0x0b: CN470
293 -
294 -0x0c: EU433
295 -
296 -0x0d: KR920
297 -
298 -0x0e: MA869
299 -
300 -(% style="color:blue" %)**Sub-Band**:
301 -
302 -AU915 and US915:value 0x00 ~~ 0x08
303 -
304 -CN470: value 0x0B ~~ 0x0C
305 -
306 -Other Bands: Always 0x00
307 -
308 -(% style="color:blue" %)**Battery Info**:
309 -
310 -Check the battery voltage.
311 -
312 312  Ex1: 0x0B45 = 2885mV
313 313  
314 314  Ex2: 0x0B49 = 2889mV
315 315  
316 316  
317 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
390 +=== 2.3.2  Distance ===
318 318  
319 319  
320 320  (((
321 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
394 +Get the distance. Flat object range 20mm - 2000mm.
395 +)))
322 322  
323 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
397 +(((
398 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
324 324  
325 -Uplink Payload totals 11 bytes.
400 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
326 326  )))
327 327  
328 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
329 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
330 -**Size(bytes)**
331 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
332 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
333 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
334 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
335 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
336 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
337 -[[Message Type>>||anchor="HMessageType"]]
338 -)))
403 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
339 339  
340 -[[image:image-20230805104104-2.png||height="136" width="754"]]
405 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
341 341  
407 +=== 2.3.3  Interrupt Pin ===
342 342  
343 -==== (% style="color:blue" %)**Battery Info**(%%) ====
344 344  
410 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
345 345  
346 -Check the battery voltage for LDS12-LB.
412 +**Example:**
347 347  
348 -Ex1: 0x0B45 = 2885mV
414 +0x00: Normal uplink packet.
349 349  
350 -Ex2: 0x0B49 = 2889mV
416 +0x01: Interrupt Uplink Packet.
351 351  
352 352  
353 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
419 +=== 2.3.4  DS18B20 Temperature sensor ===
354 354  
355 355  
356 356  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
357 357  
358 -
359 359  **Example**:
360 360  
361 361  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -363,191 +363,42 @@
363 363  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
364 364  
365 365  
366 -==== (% style="color:blue" %)**Distance**(%%) ====
431 +=== 2.3.5  Sensor Flag ===
367 367  
368 368  
369 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
370 -
371 -
372 -**Example**:
373 -
374 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
375 -
376 -
377 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
378 -
379 -
380 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
381 -
382 -
383 -**Example**:
384 -
385 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
386 -
387 -Customers can judge whether they need to adjust the environment based on the signal strength.
388 -
389 -
390 -**1) When the sensor detects valid data:**
391 -
392 -[[image:image-20230805155335-1.png||height="145" width="724"]]
393 -
394 -
395 -**2) When the sensor detects invalid data:**
396 -
397 -[[image:image-20230805155428-2.png||height="139" width="726"]]
398 -
399 -
400 -**3) When the sensor is not connected:**
401 -
402 -[[image:image-20230805155515-3.png||height="143" width="725"]]
403 -
404 -
405 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
406 -
407 -
408 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
409 -
410 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
411 -
412 -**Example:**
413 -
414 -If byte[0]&0x01=0x00 : Normal uplink packet.
415 -
416 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
417 -
418 -
419 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
420 -
421 -
422 -Characterize the internal temperature value of the sensor.
423 -
424 -**Example: **
425 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
426 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
427 -
428 -
429 -==== (% style="color:blue" %)**Message Type**(%%) ====
430 -
431 -
432 432  (((
433 -For a normal uplink payload, the message type is always 0x01.
435 +0x01: Detect Ultrasonic Sensor
434 434  )))
435 435  
436 436  (((
437 -Valid Message Type:
439 +0x00: No Ultrasonic Sensor
438 438  )))
439 439  
440 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
441 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
442 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
443 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
444 444  
445 -[[image:image-20230805150315-4.png||height="233" width="723"]]
443 +=== 2.3.6  Decode payload in The Things Network ===
446 446  
447 447  
448 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
446 +While using TTN network, you can add the payload format to decode the payload.
449 449  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
450 450  
451 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
450 +The payload decoder function for TTN V3 is here:
452 452  
453 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
454 -
455 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
457 -**Size(bytes)**
458 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
459 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
460 -Reserve(0xFF)
461 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
462 -LiDAR temp
463 -)))|(% style="width:85px" %)Unix TimeStamp
464 -
465 -**Interrupt flag & Interrupt level:**
466 -
467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
468 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
469 -**Size(bit)**
470 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
471 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
472 -Interrupt flag
452 +(((
453 +LDS12-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
473 473  )))
474 474  
475 -* (((
476 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
477 -)))
478 478  
479 -For example, in the US915 band, the max payload for different DR is:
457 +== 2.4  Uplink Interval ==
480 480  
481 -**a) DR0:** max is 11 bytes so one entry of data
482 482  
483 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
460 +The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
484 484  
485 -**c) DR2:** total payload includes 11 entries of data
486 486  
487 -**d) DR3:** total payload includes 22 entries of data.
463 +== 2.5  ​Show Data in DataCake IoT Server ==
488 488  
489 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
490 490  
491 -
492 -**Downlink:**
493 -
494 -0x31 64 CC 68 0C 64 CC 69 74 05
495 -
496 -[[image:image-20230805144936-2.png||height="113" width="746"]]
497 -
498 -**Uplink:**
499 -
500 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
501 -
502 -
503 -**Parsed Value:**
504 -
505 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
506 -
507 -
508 -[360,176,30,High,True,2023-08-04 02:53:00],
509 -
510 -[355,168,30,Low,False,2023-08-04 02:53:29],
511 -
512 -[245,211,30,Low,False,2023-08-04 02:54:29],
513 -
514 -[57,700,30,Low,False,2023-08-04 02:55:29],
515 -
516 -[361,164,30,Low,True,2023-08-04 02:56:00],
517 -
518 -[337,184,30,Low,False,2023-08-04 02:56:40],
519 -
520 -[20,4458,30,Low,False,2023-08-04 02:57:40],
521 -
522 -[362,173,30,Low,False,2023-08-04 02:58:53],
523 -
524 -
525 -**History read from serial port:**
526 -
527 -[[image:image-20230805145056-3.png]]
528 -
529 -
530 -=== 2.3.4 Decode payload in The Things Network ===
531 -
532 -
533 -While using TTN network, you can add the payload format to decode the payload.
534 -
535 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
536 -
537 -
538 538  (((
539 -The payload decoder function for TTN is here:
540 -)))
541 -
542 -(((
543 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
544 -)))
545 -
546 -
547 -== 2.4 ​Show Data in DataCake IoT Server ==
548 -
549 -
550 -(((
551 551  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
552 552  )))
553 553  
... ... @@ -579,13 +579,13 @@
579 579  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
580 580  
581 581  
582 -== 2.5 Datalog Feature ==
498 +== 2.6 Datalog Feature ==
583 583  
584 584  
585 585  Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
586 586  
587 587  
588 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
504 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
589 589  
590 590  
591 591  Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
... ... @@ -602,7 +602,7 @@
602 602  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
603 603  
604 604  
605 -=== 2.5.2 Unix TimeStamp ===
521 +=== 2.6.2 Unix TimeStamp ===
606 606  
607 607  
608 608  LDS12-LB uses Unix TimeStamp format based on
... ... @@ -619,7 +619,7 @@
619 619  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
620 620  
621 621  
622 -=== 2.5.3 Set Device Time ===
538 +=== 2.6.3 Set Device Time ===
623 623  
624 624  
625 625  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
... ... @@ -629,13 +629,13 @@
629 629  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
630 630  
631 631  
632 -=== 2.5.4 Poll sensor value ===
548 +=== 2.6.4 Poll sensor value ===
633 633  
634 634  
635 635  Users can poll sensor values based on timestamps. Below is the downlink command.
636 636  
637 637  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
638 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
554 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
639 639  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
640 640  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
641 641  
... ... @@ -656,7 +656,7 @@
656 656  )))
657 657  
658 658  
659 -== 2.6 Frequency Plans ==
575 +== 2.7 Frequency Plans ==
660 660  
661 661  
662 662  The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
... ... @@ -664,94 +664,6 @@
664 664  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
665 665  
666 666  
667 -== 2.7 LiDAR ToF Measurement ==
668 -
669 -=== 2.7.1 Principle of Distance Measurement ===
670 -
671 -
672 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
673 -
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
675 -
676 -
677 -=== 2.7.2 Distance Measurement Characteristics ===
678 -
679 -
680 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
681 -
682 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
683 -
684 -
685 -(((
686 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
687 -)))
688 -
689 -(((
690 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
691 -)))
692 -
693 -(((
694 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
695 -)))
696 -
697 -
698 -(((
699 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
700 -)))
701 -
702 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
703 -
704 -(((
705 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
706 -)))
707 -
708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
709 -
710 -(((
711 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
712 -)))
713 -
714 -
715 -=== 2.7.3 Notice of usage ===
716 -
717 -
718 -Possible invalid /wrong reading for LiDAR ToF tech:
719 -
720 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
721 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
722 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
723 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
724 -
725 -
726 -
727 -=== 2.7.4  Reflectivity of different objects ===
728 -
729 -
730 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
731 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
732 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
733 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
734 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
735 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
736 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
737 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
738 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
739 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
740 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
741 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
742 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
743 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
744 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
745 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
746 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
747 -Unpolished white metal surface
748 -)))|(% style="width:93px" %)130%
749 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
750 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
751 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
752 -
753 -
754 -
755 755  = 3. Configure LDS12-LB =
756 756  
757 757  == 3.1 Configure Methods ==
... ... @@ -765,8 +765,6 @@
765 765  
766 766  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
767 767  
768 -
769 -
770 770  == 3.2 General Commands ==
771 771  
772 772  
... ... @@ -799,7 +799,7 @@
799 799  )))
800 800  
801 801  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
802 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
628 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
803 803  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
804 804  30000
805 805  OK
... ... @@ -835,24 +835,20 @@
835 835  === 3.3.2 Set Interrupt Mode ===
836 836  
837 837  
838 -Feature, Set Interrupt mode for pin of GPIO_EXTI.
664 +Feature, Set Interrupt mode for PA8 of pin.
839 839  
840 -When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
666 +When AT+INTMOD=0 is set, PA8 is used as a digital input port.
841 841  
842 842  (% style="color:blue" %)**AT Command: AT+INTMOD**
843 843  
844 844  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
845 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
671 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
846 846  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
847 847  0
848 848  OK
849 849  the mode is 0 =Disable Interrupt
850 850  )))
851 -|(% style="width:154px" %)(((
852 -AT+INTMOD=2
853 -
854 -(default)
855 -)))|(% style="width:196px" %)(((
677 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
856 856  Set Transmit Interval
857 857  0. (Disable Interrupt),
858 858  ~1. (Trigger by rising and falling edge)
... ... @@ -870,39 +870,6 @@
870 870  
871 871  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
872 872  
873 -
874 -
875 -=== 3.3.3  Set Power Output Duration ===
876 -
877 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
878 -
879 -~1. first enable the power output to external sensor,
880 -
881 -2. keep it on as per duration, read sensor value and construct uplink payload
882 -
883 -3. final, close the power output.
884 -
885 -(% style="color:blue" %)**AT Command: AT+3V3T**
886 -
887 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
888 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
889 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
890 -OK
891 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
892 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
893 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
894 -
895 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
896 -Format: Command Code (0x07) followed by 3 bytes.
897 -
898 -The first byte is 01,the second and third bytes are the time to turn on.
899 -
900 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
901 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
902 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
903 -
904 -
905 -
906 906  = 4. Battery & Power Consumption =
907 907  
908 908  
... ... @@ -923,7 +923,7 @@
923 923  
924 924  * Fix bugs.
925 925  
926 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
715 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
927 927  
928 928  Methods to Update Firmware:
929 929  
... ... @@ -931,8 +931,6 @@
931 931  
932 932  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
933 933  
934 -
935 -
936 936  = 6. FAQ =
937 937  
938 938  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -953,11 +953,11 @@
953 953  
954 954  
955 955  (((
956 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
743 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
957 957  )))
958 958  
959 959  (((
960 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
747 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
961 961  )))
962 962  
963 963  
... ... @@ -966,7 +966,7 @@
966 966  )))
967 967  
968 968  (((
969 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
756 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
970 970  )))
971 971  
972 972  
... ... @@ -993,8 +993,6 @@
993 993  
994 994  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
995 995  
996 -
997 -
998 998  = 9. ​Packing Info =
999 999  
1000 1000  
... ... @@ -1012,8 +1012,6 @@
1012 1012  
1013 1013  * Weight / pcs : g
1014 1014  
1015 -
1016 -
1017 1017  = 10. Support =
1018 1018  
1019 1019  
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content