Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.11
edited by Xiaoling
on 2023/08/07 09:45
Change comment: There is no comment for this version
To version 171.3
edited by Mengting Qiu
on 2023/12/12 11:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,8 +7,9 @@
7 7  
8 8  
9 9  
10 -**Table of Contents:**
11 11  
11 +**Table of Contents:(% style="display:none" %) (%%)**
12 +
12 12  {{toc/}}
13 13  
14 14  
... ... @@ -18,178 +18,80 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. DS20L can measure range between 3cm ~~ 200cm.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +[[image:image-20231110102635-5.png||height="402" width="807"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
41 +* LoRaWAN Class A protocol
42 +* LiDAR distance detector, range 3 ~~ 200cm
43 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
45 +* Remotely configure parameters via LoRaWAN Downlink
46 +* Alarm & Counting mode
47 +* Firmware upgradable via program port or LoRa protocol
48 +* Built-in 2400mAh battery or power by external power source
56 56  
57 -
58 -
59 59  == 1.3 Specification ==
60 60  
52 +(% style="color:#037691" %)**LiDAR Sensor:**
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
54 +* Operation Temperature: -40 ~~ 80 °C
55 +* Operation Humidity: 0~~99.9%RH (no Dew)
56 +* Storage Temperature: -10 ~~ 45°C
57 +* Measure Range: 3cm~~200cm @ 90% reflectivity
58 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
59 +* ToF FoV: ±9°, Total 18°
60 +* Light source: VCSEL
63 63  
64 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
62 +== 1.4 Power Consumption ==
66 66  
67 -(% style="color:#037691" %)**Probe Specification:**
68 68  
69 -* Storage temperature:-20℃~~75℃
70 -* Operating temperature : -20℃~~60℃
71 -* Measure Distance:
72 -** 0.1m ~~ 12m @ 90% Reflectivity
73 -** 0.1m ~~ 4m @ 10% Reflectivity
74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution : 5mm
76 -* Ambient light immunity : 70klux
77 -* Enclosure rating : IP65
78 -* Light source : LED
79 -* Central wavelength : 850nm
80 -* FOV : 3.6°
81 -* Material of enclosure : ABS+PC
82 -* Wire length : 25cm
65 +(% style="color:#037691" %)**Battery Power Mode:**
83 83  
84 -(% style="color:#037691" %)**LoRa Spec:**
67 +* Idle: 3uA @ 3.3v
68 +* Max : 360 mA
85 85  
86 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 -* Max +22 dBm constant RF output vs.
88 -* RX sensitivity: down to -139 dBm.
89 -* Excellent blocking immunity
70 +(% style="color:#037691" %)**Continuously mode**:
90 90  
91 -(% style="color:#037691" %)**Battery:**
72 +* Idle: 21 mA @ 3.3v
73 +* Max : 360 mA
92 92  
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self-Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
75 +== 1.5 Use Case ==
98 98  
99 -(% style="color:#037691" %)**Power Consumption**
77 +(% class="mark" %)**Regular Distance Detect**
100 100  
101 -* Sleep Mode: 5uA @ 3.3v
102 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 +[[image:image-20231211220922-1.png||height="352" width="605"]]
103 103  
104 104  
82 +(% class="mark" %)**Counting / Alarm**
105 105  
106 -== 1.4 Applications ==
84 +[[image:image-20231211221253-2.png]]
107 107  
108 108  
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
87 +[[image:image-20231211221436-3.png]]
116 116  
117 117  
90 += 2. Configure DS20L to connect to LoRaWAN network =
118 118  
119 -(% style="display:none" %)
120 -
121 -== 1.5 Sleep mode and working mode ==
122 -
123 -
124 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125 -
126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 -
128 -
129 -== 1.6 Button & LEDs ==
130 -
131 -
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133 -
134 -
135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 -)))
141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 -)))
146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 -
148 -
149 -
150 -== 1.7 BLE connection ==
151 -
152 -
153 -LDS12-LB support BLE remote configure.
154 -
155 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
156 -
157 -* Press button to send an uplink
158 -* Press button to active device.
159 -* Device Power on or reset.
160 -
161 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 -
163 -
164 -== 1.8 Pin Definitions ==
165 -
166 -
167 -[[image:image-20230805144259-1.png||height="413" width="741"]]
168 -
169 -== 1.9 Mechanical ==
170 -
171 -
172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173 -
174 -
175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
176 -
177 -
178 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
179 -
180 -
181 -(% style="color:blue" %)**Probe Mechanical:**
182 -
183 -
184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185 -
186 -
187 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
188 -
189 189  == 2.1 How it works ==
190 190  
191 191  
192 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
95 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
193 193  
194 194  (% style="display:none" %) (%%)
195 195  
... ... @@ -198,58 +198,53 @@
198 198  
199 199  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
200 200  
201 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
104 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.(% style="display:none" %)
202 202  
203 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
106 +[[image:image-20231110102635-5.png||height="402" width="807"]](% style="display:none" %)
204 204  
108 +=== Step 1: Create a device in TTN with the OTAA keys from DS20L. ===
205 205  
206 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
110 +Each DS20L is shipped with a sticker with the default device EUI as below:
207 207  
208 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
209 -
210 210  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
211 211  
212 212  
213 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +You can enter this key in the LoRaWAN Server portal. Below is TTN V3 screenshot:
214 214  
215 215  
216 216  (% style="color:blue" %)**Register the device**
217 217  
218 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
120 +[[image:image-20231207144600-2.png||height="703" width="756"]]
219 219  
220 220  
221 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
123 +(% style="color:blue" %)**Add DevEUI and AppKey**
222 222  
223 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
125 +[[image:image-20231207145121-5.png||height="540" width="756"]]
224 224  
225 225  
226 -(% style="color:blue" %)**Add APP EUI in the application**
227 227  
129 +=== Step 2: Activate DS20L ===
228 228  
229 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
131 +[[image:image-20231128133704-1.png||height="189" width="441"]]
230 230  
133 +Press the button for 5 seconds to activate the DS20L.
231 231  
232 -(% style="color:blue" %)**Add APP KEY**
135 +The switch is switched to (% style="color:blue" %)**E** (%%)and the external power supply is used.
233 233  
234 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
137 +The switch is switched to (% style="color:blue" %)**I** (%%)and DS20L will be power by the built-in battery.
235 235  
236 -
237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
238 -
239 -
240 -Press the button for 5 seconds to activate the LDS12-LB.
241 -
242 242  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 243  
244 244  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245 245  
246 246  
144 +
247 247  == 2.3 ​Uplink Payload ==
248 248  
249 249  === 2.3.1 Device Status, FPORT~=5 ===
250 250  
251 251  
252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
150 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
253 253  
254 254  The Payload format is as below.
255 255  
... ... @@ -261,9 +261,9 @@
261 261  
262 262  Example parse in TTNv3
263 263  
264 -[[image:image-20230805103904-1.png||height="131" width="711"]]
162 +[[image:image-20231206151412-3.png||height="179" width="1070"]]
265 265  
266 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
164 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x21
267 267  
268 268  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
269 269  
... ... @@ -317,456 +317,370 @@
317 317  === 2.3.2 Uplink Payload, FPORT~=2 ===
318 318  
319 319  
320 -(((
321 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
218 +==== (% style="color:red" %)**AT+MOD~=1**(%%) ====
322 322  
323 -periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
220 +Regularly detect distance and report. When the distance exceeds the limit, the alarm flag is set to 1, and the report can be triggered by external interrupts.
324 324  
325 -Uplink Payload totals 11 bytes.
326 -)))
222 +**Uplink Payload totals 10 bytes.**
327 327  
328 328  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
329 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
330 -**Size(bytes)**
331 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
332 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
333 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
334 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
335 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
336 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
337 -[[Message Type>>||anchor="HMessageType"]]
338 -)))
225 +|(% style="background-color:#4f81bd; color:White; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:White; width:30px" %)**2**|(% style="background-color:#4f81bd; color:White; width:130px" %)**1**|(% style="background-color:#4f81bd; color:White; width:70px" %)**2**|(% style="background-color:#4f81bd; color:White; width:100px" %)**1**|(% style="background-color:#4f81bd; color:White; width:120px" %)**4**
226 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:176px" %)MOD+ Alarm+ Interrupt|(% style="width:74px" %)Distance|(% style="width:100px" %)Sensor State|(% style="width:119px" %)Interrupt Count
339 339  
340 -[[image:image-20230805104104-2.png||height="136" width="754"]]
228 +**MOD+ Alarm+ Interrupt:**
341 341  
230 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:400px" %)
231 +|(% style="background-color:#4f81bd; color:White; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:White; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:White; width:70px" %)**bit5**|(% style="background-color:#4f81bd; color:White; width:120px" %)**bit4**
232 +|(% style="width:80px" %)Value|(% style="width:80px" %)MOD|(% style="width:89px" %)Digital Interrupt
233 + |(% style="width:167px" %)(((
234 +Distance Alarm
342 342  
343 -==== (% style="color:blue" %)**Battery Info**(%%) ====
236 +0: No Alarm;
344 344  
238 +1: Alarm
239 +)))
345 345  
346 -Check the battery voltage for LDS12-LB.
241 +Example parse in TTNv3
347 347  
348 -Ex1: 0x0B45 = 2885mV
243 +[[image:image-20231209152917-1.png||height="300" width="1172"]]
349 349  
350 -Ex2: 0x0B49 = 2889mV
245 +(% style="color:blue" %)**Battery Info:**
351 351  
247 +Check the battery voltage for DS20L
352 352  
353 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
249 +Ex1: 0x0E10 = 3600mV
354 354  
355 355  
356 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
252 +(% style="color:blue" %)**MOD & Alarm & Interrupt:**
357 357  
254 +(% style="color:red" %)**MOD:**
358 358  
359 -**Example**:
256 +**Example: ** (0x60>>6) & 0x3f =1
360 360  
361 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
258 +**0x01:**  Regularly detect distance and report.
259 +**0x02: ** Uninterrupted measurement (external power supply).
362 362  
363 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
261 +(% style="color:red" %)**Alarm:**
364 364  
263 +When the detection distance exceeds the limit, the alarm flag is set to 1.
365 365  
366 -==== (% style="color:blue" %)**Distance**(%%) ====
265 +(% style="color:red" %)**Interrupt:**
367 367  
267 +Whether it is an external interrupt.
368 368  
369 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
370 370  
270 +(% style="color:blue" %)**Distance info:**
371 371  
372 372  **Example**:
373 373  
374 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
274 +If payload is: 0708H: distance = 0708H = 1800 mm
375 375  
376 376  
377 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
277 +(% style="color:blue" %)**Sensor State:**
378 378  
279 +Ex1: 0x00: Distance Reading is valid
379 379  
380 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
281 +Ex2: 0x0x: Distance Reading is invalid
381 381  
382 382  
383 -**Example**:
284 +(% style="color:blue" %)**Interrupt Count:**
384 384  
385 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
286 +If payload is:000007D0H: count = 07D0H =2000
386 386  
387 -Customers can judge whether they need to adjust the environment based on the signal strength.
388 388  
389 389  
390 -**1) When the sensor detects valid data:**
290 +==== (% style="color:red" %)**AT+MOD~=2**(%%)** ** ====
391 391  
392 -[[image:image-20230805155335-1.png||height="145" width="724"]]
393 393  
293 +The power consumption of uninterrupted measurement is high, and the device needs to use external power supply.(The switch is switched to E and the external power supply is used.)
394 394  
395 -**2) When the sensor detects invalid data:**
295 +[[image:image-20231128133704-1.png||height="189" width="441"]]
396 396  
397 -[[image:image-20230805155428-2.png||height="139" width="726"]]
398 398  
298 +* **Set over-limit alarm mode: AT+DOL=3,500,244,**(% style="color:red" %)0(%%)**,120**
399 399  
400 -**3) When the sensor is not connected:**
300 +(% class="wikigeneratedid" id="HUninterruptedmeasurement.Whenthedistanceexceedsthelimit2CtheoutputIOissethighandreportsarereportedeveryfiveminutes.Thetimecanbesetandpoweredbyanexternalpowersupply.UplinkPayloadtotals11bytes." %)
301 +Uninterrupted measurement. When the distance exceeds the limit, the output IO high, instant alarm.
401 401  
402 -[[image:image-20230805155515-3.png||height="143" width="725"]]
303 +(% class="wikigeneratedid" %)
304 +**Uplink Payload totals 9 bytes.**
403 403  
306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
307 +|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
308 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:210px" %)MOD+ DO+ Alarm+ DO flag+ Limit flag|(% style="width:74px" %)Distance |(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
404 404  
405 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
310 +**MOD+DO+ Alarm+ Do flag+ Limit flag:**
406 406  
407 -
408 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
409 -
410 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
411 -
412 -**Example:**
413 -
414 -If byte[0]&0x01=0x00 : Normal uplink packet.
415 -
416 -If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
417 -
418 -
419 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
420 -
421 -
422 -Characterize the internal temperature value of the sensor.
423 -
424 -**Example: **
425 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
426 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
427 -
428 -
429 -==== (% style="color:blue" %)**Message Type**(%%) ====
430 -
431 -
312 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
313 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:120px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:100px" %)**[bit2:bit1:bit0]**
314 +|(% style="width:50px" %)Value|(% style="width:60px" %)MOD|(% style="width:89px" %)(((
432 432  (((
433 -For a normal uplink payload, the message type is always 0x01.
316 +DO
434 434  )))
435 435  
436 436  (((
437 -Valid Message Type:
320 +0:Within limit
321 +
322 +1:Out of limit
438 438  )))
324 +)))|(% style="width:73px" %)(((
325 +Alarm
439 439  
440 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
441 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
442 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
443 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
327 +0: No Alarm;
444 444  
445 -[[image:image-20230805150315-4.png||height="233" width="723"]]
329 +1: Alarm
330 +)))|(% style="width:150px" %)(((
331 +DO flag
446 446  
333 +0:the over-limit alarm mode
447 447  
448 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
335 +1:the person or object count mode
336 +)))|(% style="width:103px" %)Limit flag
337 +(0~~3)
449 449  
339 +Example parse in TTNv3
450 450  
451 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
341 +[[image:image-20231209171127-3.png||height="374" width="1209"]]
452 452  
453 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
343 +(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
454 454  
455 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
457 -**Size(bytes)**
458 -)))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
459 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
460 -Reserve(0xFF)
461 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
462 -LiDAR temp
463 -)))|(% style="width:85px" %)Unix TimeStamp
345 +(% style="color:red" %)**MOD:**
464 464  
465 -**Interrupt flag & Interrupt level:**
347 +**Example: ** (0x60>>6) & 0x3f =1
466 466  
467 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
468 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
469 -**Size(bit)**
470 -)))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
471 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
472 -Interrupt flag
473 -)))
349 +**0x01:**  Regularly detect distance and report.
350 +**0x02: ** Uninterrupted measurement (external power supply).
474 474  
475 -* (((
476 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
477 -)))
352 +(% style="color:red" %)**Alarm:**
478 478  
479 -For example, in the US915 band, the max payload for different DR is:
354 +When the detection distance exceeds the limit, the alarm flag is set to 1.
480 480  
481 -**a) DR0:** max is 11 bytes so one entry of data
356 +(% style="color:red" %)**DO:**
482 482  
483 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
358 +Shows the DO pin status, while there is alarm trigger, The DO pin will be set to high (3.3v), It will be set to 0 low level when there is no alarm.
484 484  
485 -**c) DR2:** total payload includes 11 entries of data
360 +(% style="color:red" %)**Threshold Flag for Alarm:**
486 486  
487 -**d) DR3:** total payload includes 22 entries of data.
362 +Mode for setting threshold: **0~~3**
488 488  
489 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
364 +**0:** Distance limit range is not enabled, alarm:0.
490 490  
366 +**1:** Trigger Alarm if distance exceed the range between lower and upper.
491 491  
492 -**Downlink:**
368 +**2:** Trigger Alarm if distance smaller than the upper limit.
493 493  
494 -0x31 64 CC 68 0C 64 CC 69 74 05
370 +**3: **Trigger Alarm if distance bigger than the lower limit .
495 495  
496 -[[image:image-20230805144936-2.png||height="113" width="746"]]
497 497  
498 -**Uplink:**
373 +(% style="color:blue" %)**Distance:**
499 499  
500 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
375 + Actual sampling distance values.
501 501  
377 +**Example:**
502 502  
503 -**Parsed Value:**
379 +**AT+DOL=1,500,244,**(% style="color:red" %)0(%%)**,120  **
504 504  
505 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
381 +The distance is detected every 120ms.
506 506  
383 +When the actual detection value is within the range of [244mm,500mm], the data is uploaded in the normal TDC time.
507 507  
508 -[360,176,30,High,True,2023-08-04 02:53:00],
385 +When the actual detection value is outside the range of [244mm,500mm], the uplink data will be immediately alerted.
509 509  
510 -[355,168,30,Low,False,2023-08-04 02:53:29],
387 +If payload is: 0708H: distance = 0708H = 1800 mm
511 511  
512 -[245,211,30,Low,False,2023-08-04 02:54:29],
513 513  
514 -[57,700,30,Low,False,2023-08-04 02:55:29],
390 +(% style="color:blue" %)**Upper limit:**
515 515  
516 -[361,164,30,Low,True,2023-08-04 02:56:00],
392 +Show the pre-set upper limit in Hex, Unit: mm.
517 517  
518 -[337,184,30,Low,False,2023-08-04 02:56:40],
394 +Ex: 01F4(H)=500mm
519 519  
520 -[20,4458,30,Low,False,2023-08-04 02:57:40],
521 521  
522 -[362,173,30,Low,False,2023-08-04 02:58:53],
397 +(% style="color:blue" %)**Lower limit:**
523 523  
399 +Show the pre-set lower limit in Hex, Unit: mm.
524 524  
525 -**History read from serial port:**
401 +Ex: 0xF4(H)=244mm
526 526  
527 -[[image:image-20230805145056-3.png]]
528 528  
404 +* **Set the person or object count mode: AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120**
529 529  
530 -=== 2.3.4 Decode payload in The Things Network ===
406 +Continuous measurement, detect and count people or things passing by in distance limit mode.
531 531  
408 +**Uplink Payload totals 11 bytes.**
532 532  
533 -While using TTN network, you can add the payload format to decode the payload.
410 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
411 +|(% style="background-color:#4f81bd; color:white; width:70px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:130px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**4**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**
412 +|(% style="width:91px" %)Value|(% style="width:41px" %)BAT|(% style="width:210px" %)MOD+ DO+ Alarm+ DO flag+ Limit flag|(% style="width:176px" %)Distance limit alarm count|(% style="width:100px" %)Upper limit|(% style="width:119px" %)Lower limit
534 534  
535 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
414 +**MOD+DO+ Alarm+ Do flag+ Limit flag:**
536 536  
537 -
416 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:680px" %)
417 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[bit7:bit6]**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:90px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:120px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:100px" %)**[bit2:bit1:bit0]**
418 +|(% style="width:50px" %)Value|(% style="width:60px" %)MOD|(% style="width:89px" %)(((
538 538  (((
539 -The payload decoder function for TTN is here:
420 +DO
540 540  )))
541 541  
542 542  (((
543 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
544 -)))
424 +0:Within limit
545 545  
546 -
547 -== 2.4 ​Show Data in DataCake IoT Server ==
548 -
549 -
550 -(((
551 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
426 +1:Out of limit
552 552  )))
428 +)))|(% style="width:73px" %)(((
429 +Alarm
553 553  
431 +0: No Alarm;
554 554  
555 -(((
556 -(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
557 -)))
433 +1: Alarm
434 +)))|(% style="width:150px" %)(((
435 +DO flag
558 558  
559 -(((
560 -(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
561 -)))
437 +0:the over-limit alarm mode
562 562  
439 +1:the person or object count mode
440 +)))|(% style="width:103px" %)Limit flag
441 +(0~~3)
563 563  
564 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
443 +Example parse in TTNv3
565 565  
445 +[[image:image-20231209173457-5.png||height="277" width="1098"]]
566 566  
567 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
447 +(% style="color:blue" %)**MOD & Alarm & Do & Limit flag:**
568 568  
449 +(% style="color:red" %)**MOD:**
569 569  
570 -(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
451 +**Example: ** (0x60>>6) & 0x3f =1
571 571  
572 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
453 +**0x01:**  Regularly detect distance and report.
454 +**0x02: ** Uninterrupted measurement (external power supply).
573 573  
574 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
456 +(% style="color:red" %)**Alarm:**
575 575  
458 +When the detection distance exceeds the limit, the alarm flag is set to 1.
576 576  
577 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
460 +(% style="color:red" %)**Do:**
578 578  
579 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
462 +Shows the DO pin status, while there is alarm trigger, The DO pin will be set to high (3.3v), It will be set to 0 low level when there is no alarm.
580 580  
464 +(% style="color:red" %)**Threshold Flag for Alarm:**
581 581  
582 -== 2.5 Datalog Feature ==
466 +Mode for setting threshold: **0~~3**
583 583  
468 +**0:** does not use upper and lower limits
584 584  
585 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
470 +**1:** Use upper and lower limits
586 586  
472 +**2:** Less than the upper limit
587 587  
588 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
474 +**3: **Greater than the lower limit
589 589  
590 590  
591 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
477 +(% style="color:blue" %)**Distance limit alarm count:**
592 592  
593 -* (((
594 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
595 -)))
596 -* (((
597 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
598 -)))
479 +People or objects are collected and counted within a limited distance.
599 599  
600 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
481 +The detection of a stationary person or object at each sampling time will be repeated three times, and the fourth sampling count will be added by 1.
601 601  
602 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
483 +**Example:**
603 603  
485 +**AT+DOL=1,500,244,**(% style="color:red" %)1(%%)**,120   **
604 604  
605 -=== 2.5.2 Unix TimeStamp ===
487 +People or objects passing within the distance range of [244mm,500mm] are detected and counted every 120ms.
606 606  
489 +If payload is: 0x56H, interrupt count =0x56H =86
607 607  
608 -LDS12-LB uses Unix TimeStamp format based on
609 609  
610 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
492 +(% style="color:blue" %)**Upper limit:**
611 611  
612 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
494 +Show the pre-set upper limit in Hex, Unit: mm.
613 613  
614 -Below is the converter example
496 +Ex: 01F4(H)=500mm
615 615  
616 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
617 617  
499 +(% style="color:blue" %)**Lower limit:**
618 618  
619 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
501 +Show the pre-set lower limit in Hex, Unit: mm.
620 620  
503 +Ex: 0xF4(H)=244mm
621 621  
622 -=== 2.5.3 Set Device Time ===
623 623  
506 +== 2.4 Decode payload in The Things Network ==
624 624  
625 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
626 626  
627 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
509 +While using TTN network, you can add the payload format to decode the payload.
628 628  
629 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
511 +[[image:image-20231206143515-1.png||height="534" width="759"]]
630 630  
631 631  
632 -=== 2.5.4 Poll sensor value ===
633 -
634 -
635 -Users can poll sensor values based on timestamps. Below is the downlink command.
636 -
637 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
638 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
639 -|(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
640 -|(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
641 -
642 642  (((
643 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
515 +The payload decoder function for TTN is here:
644 644  )))
645 645  
646 646  (((
647 -For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
519 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
648 648  )))
649 649  
650 -(((
651 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
652 -)))
653 653  
654 -(((
655 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
656 -)))
523 +== 2.5 ​Show Data in DataCake IoT Server ==
657 657  
658 658  
659 -== 2.6 Frequency Plans ==
660 -
661 -
662 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
663 -
664 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
665 -
666 -
667 -== 2.7 LiDAR ToF Measurement ==
668 -
669 -=== 2.7.1 Principle of Distance Measurement ===
670 -
671 -
672 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
673 -
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
675 -
676 -
677 -=== 2.7.2 Distance Measurement Characteristics ===
678 -
679 -
680 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
681 -
682 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
683 -
684 -
685 685  (((
686 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
527 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, onhuman-friendlya in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
687 687  )))
688 688  
530 +
689 689  (((
690 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
532 +(% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
691 691  )))
692 692  
693 693  (((
694 -(% style="color:blue" %)** **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
536 +(% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
695 695  )))
696 696  
697 697  
698 -(((
699 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
700 -)))
540 +[[image:image-20231207153532-6.png||height="562" width="861"]]
701 701  
702 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
703 703  
704 -(((
705 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
706 -)))
543 +[[image:image-20231207155940-8.png]]
707 707  
708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
545 +For more detailed instructions, refer to the following instructions: [[Welcome - Datacake Docs>>url:https://docs.datacake.de/]]
709 709  
710 -(((
711 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
712 -)))
547 +[[image:image-20231207160733-11.png||height="429" width="759"]]
713 713  
714 714  
715 -=== 2.7.3 Notice of usage ===
550 +(% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
716 716  
552 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
717 717  
718 -Possible invalid /wrong reading for LiDAR ToF tech:
554 +[[image:image-20231207160343-10.png||height="665" width="705"]]
719 719  
720 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
721 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
722 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
723 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
724 724  
557 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
725 725  
559 +[[image:image-20231129100454-2.png||height="501" width="928"]]
726 726  
727 -=== 2.7.4  Reflectivity of different objects ===
728 728  
562 +== 2.6 Frequency Plans ==
729 729  
730 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
731 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
732 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
733 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
734 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
735 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
736 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
737 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
738 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
739 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
740 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
741 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
742 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
743 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
744 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
745 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
746 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
747 -Unpolished white metal surface
748 -)))|(% style="width:93px" %)130%
749 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
750 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
751 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
752 752  
565 +The DS20L uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
753 753  
567 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
754 754  
755 -= 3. Configure LDS12-LB =
756 756  
570 += 3. Configure DS20L =
571 +
757 757  == 3.1 Configure Methods ==
758 758  
759 759  
760 -LDS12-LB supports below configure method:
575 +DS20L supports below configure method:
761 761  
762 -* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
763 -
764 764  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
765 765  
766 766  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
767 767  
768 768  
769 -
770 770  == 3.2 General Commands ==
771 771  
772 772  
... ... @@ -781,10 +781,10 @@
781 781  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
782 782  
783 783  
784 -== 3.3 Commands special design for LDS12-LB ==
596 +== 3.3 Commands special design for DS20L ==
785 785  
786 786  
787 -These commands only valid for LDS12-LB, as below:
599 +Below commands only valid for DS20L, as below:
788 788  
789 789  
790 790  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -826,7 +826,7 @@
826 826  Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
827 827  )))
828 828  * (((
829 -Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
641 +Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
830 830  
831 831  
832 832  
... ... @@ -849,7 +849,7 @@
849 849  the mode is 0 =Disable Interrupt
850 850  )))
851 851  |(% style="width:154px" %)(((
852 -AT+INTMOD=2
664 +AT+INTMOD=3
853 853  
854 854  (default)
855 855  )))|(% style="width:196px" %)(((
... ... @@ -870,43 +870,121 @@
870 870  
871 871  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
872 872  
685 +=== 3.3.3 Set work mode ===
873 873  
874 874  
875 -=== 3.3.3  Set Power Output Duration ===
688 +Feature: Switch working mode
876 876  
877 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
690 +(% style="color:blue" %)**AT Command: AT+MOD**
878 878  
879 -~1. first enable the power output to external sensor,
692 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
693 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Response**
694 +|(% style="width:162px" %)AT+MOD=?|(% style="width:191px" %)Get the current working mode.|(% style="width:106px" %)OK
695 +|(% style="width:162px" %)AT+MOD=1|(% style="width:191px" %)Set the working mode to Regular measurements.|(% style="width:106px" %)(((
696 +OK
697 +Attention:Take effect after ATZ
698 +)))
880 880  
881 -2. keep it on as per duration, read sensor value and construct uplink payload
700 +(% style="color:blue" %)**Downlink Command:**
882 882  
883 -3. final, close the power output.
702 +* **Example: **0x0A01 ~/~/  Same as AT+MOD=1
884 884  
885 -(% style="color:blue" %)**AT Command: AT+3V3T**
704 +* **Example:** 0x0A02  ~/~/  Same as AT+MOD=2
886 886  
706 +=== 3.3.4 Set threshold and threshold mode ===
707 +
708 +
709 +Feature, Set threshold and threshold mode
710 +
711 +When (% style="color:#037691" %)**AT+DOL=0,0,0,0,400**(%%) is set, No threshold is used, the sampling time is 400ms.
712 +
713 +(% style="color:blue" %)**AT Command: AT+DOL**
714 +
887 887  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
888 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
889 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
716 +|(% style="background-color:#4f81bd; color:white; width:162px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:240px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:108px" %)**Response**
717 +|(% style="width:172px" %)AT+ DOL =?|(% style="width:279px" %)Get the current threshold mode and sampling time|(% style="width:118px" %)(((
718 +0,0,0,0,400
890 890  OK
891 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
892 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
893 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
720 +)))
721 +|(% style="width:172px" %)AT+ DOL =1,1800,100,0,400|(% style="width:279px" %)Set only the upper and lower thresholds|(% style="width:118px" %)OK
894 894  
895 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
896 -Format: Command Code (0x07) followed by 3 bytes.
723 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
724 +|=(% style="width: 162px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 193px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 155px;background-color:#4F81BD;color:white" %) Parameter
725 +|(% rowspan="11" style="color:blue; width:120px" %)(((
726 +
897 897  
898 -The first byte is 01,the second and third bytes are the time to turn on.
899 899  
900 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
901 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
902 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
903 903  
904 904  
905 905  
732 +
733 +
734 +
735 +
736 +
737 +**AT+DOL=1,1800,3,0,400**
738 +)))|(% rowspan="4" style="width:240px" %)(((
739 +
740 +
741 +
742 +
743 +The first bit sets the limit mode
744 +)))|(% style="width:150px" %)0: Do not use upper and lower limits
745 +|(% style="width:251px" %)1: Use upper and lower limits
746 +|(% style="width:251px" %)2:Less than the upper limit
747 +|(% style="width:251px" %)3: Greater than the lower limit
748 +|(% style="width:226px" %)The second bit sets the upper limit value|(% style="width:251px" %)3~~2000MM
749 +|(% style="width:226px" %)The third bit sets the lower limit value|(% style="width:251px" %)3~~2000MM
750 +|(% rowspan="2" style="width:226px" %)The fourth bit sets the over-limit alarm or person or object count.|(% style="width:251px" %)0 Over-limit alarm, DO output is high
751 +|(% style="width:251px" %)1 Person or object counting statistics
752 +|(% style="width:226px" %)The fifth bit sets the sampling time|(% style="width:251px" %)(((
753 +100~~10000ms
754 +
755 +
756 +)))
757 +
758 +(% style="color:blue" %)**Downlink Command: 0x07**
759 +
760 +Format: Command Code (0x07) followed by 9 bytes.
761 +
762 +If the downlink payload=**07 01 0708 0064 00 0190**, it means set the END Node's limit mode to 0x01,upper limit value to 0x0708=1800(mm), lower limit value to 0x0064=100(mm), to over-limit alarm(0x00) ,the sampling time to 0x0190=400(ms), while type code is 0x07.
763 +
764 +* Example 0: Downlink Payload: 07 00 0000 0000 00 0190  **~-~-->**  AT+MOD=0,0,0,0,400
765 +
766 +* Example 1: Downlink Payload: 070107080064000190  **~-~-->**  AT+MOD=1,1800,100,0,400
767 +
768 +* Example 2: Downlink Payload: 070200000064000190  **~-~-->**  AT+MOD=2,1800,100,0,400
769 +
770 +* Example 3: Downlink Payload: 070300000064000190  **~-~-->**  AT+MOD=3,0,100,0,400
771 +
772 +(% style="color:Red" %)**Note: The over-limit alarm is applied to MOD1 and MOD2.**
773 +
774 +**For example:**
775 +
776 +* **AT+MOD=1**
777 +
778 + **AT+DOL=1,500,244,**(% style="color:blue" %)0(%%)**,300**
779 +
780 +Send data according to the normal TDC time. If the mode limit is exceeded, the alarm flag is set to 1:
781 +
782 +[[image:image-20231211113204-2.png||height="292" width="1093"]]
783 +
784 +* **AT+MOD=2  **
785 +
786 + **AT+DOL=1,500,244,**(% style="color:blue" %)0(%%)**,300**
787 +
788 +If the mode limit is exceeded, the data is immediately uplink and the alarm flag is set to 1:
789 +
790 +[[image:image-20231211114932-3.png||height="277" width="1248"]]
791 +
792 +
793 +
794 +
795 +
906 906  = 4. Battery & Power Consumption =
907 907  
908 908  
909 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
799 +DS20L use built-in 2400mAh non-chargeable battery for long-term use up to several years*. See below link for detail information about the battery info and how to replace.
910 910  
911 911  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
912 912  
... ... @@ -915,7 +915,7 @@
915 915  
916 916  
917 917  (% class="wikigeneratedid" %)
918 -User can change firmware LDS12-LB to:
808 +User can change firmware DS20L to:
919 919  
920 920  * Change Frequency band/ region.
921 921  
... ... @@ -923,7 +923,7 @@
923 923  
924 924  * Fix bugs.
925 925  
926 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
816 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
927 927  
928 928  Methods to Update Firmware:
929 929  
... ... @@ -931,16 +931,41 @@
931 931  
932 932  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
933 933  
824 += 6. FAQ =
934 934  
826 +== 6.1 What is the frequency plan for DS20L? ==
935 935  
936 -= 6. FAQ =
937 937  
938 -== 6.1 What is the frequency plan for LDS12-LB? ==
829 +DS20L use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
939 939  
940 940  
941 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
832 +== 6.2 DS20L programming line ==
942 942  
943 943  
835 +缺图 后续补上
836 +
837 +feature:
838 +
839 +for AT commands
840 +
841 +Update the firmware of DS20L
842 +
843 +Support interrupt mode
844 +
845 +
846 +== 6.3 LiDAR probe position ==
847 +
848 +
849 +[[image:1701155390576-216.png||height="285" width="307"]]
850 +
851 +The black oval hole in the picture is the LiDAR probe.
852 +
853 +
854 +== 6.4 Interface definition ==
855 +
856 +[[image:image-20231128151132-2.png||height="305" width="557"]]
857 +
858 +
944 944  = 7. Trouble Shooting =
945 945  
946 946  == 7.1 AT Command input doesn't work ==
... ... @@ -973,7 +973,7 @@
973 973  = 8. Order Info =
974 974  
975 975  
976 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
891 +Part Number: (% style="color:blue" %)**DS20L-XXX**
977 977  
978 978  (% style="color:red" %)**XXX**(%%): **The default frequency band**
979 979  
... ... @@ -993,14 +993,12 @@
993 993  
994 994  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
995 995  
996 -
997 -
998 998  = 9. ​Packing Info =
999 999  
1000 1000  
1001 1001  (% style="color:#037691" %)**Package Includes**:
1002 1002  
1003 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
916 +* DS20L LoRaWAN Smart Distance Detector x 1
1004 1004  
1005 1005  (% style="color:#037691" %)**Dimension and weight**:
1006 1006  
... ... @@ -1012,8 +1012,6 @@
1012 1012  
1013 1013  * Weight / pcs : g
1014 1014  
1015 -
1016 -
1017 1017  = 10. Support =
1018 1018  
1019 1019  
1701149922873-259.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.5 KB
Content
1701152902759-553.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701152946067-561.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.2 KB
Content
1701155076393-719.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.6 KB
Content
1701155150328-206.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +54.6 KB
Content
1701155390576-216.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +293.9 KB
Content
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110102635-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +84.7 KB
Content
image-20231128133704-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.6 KB
Content
image-20231128151132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +281.2 KB
Content
image-20231129085201-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +70.6 KB
Content
image-20231129100454-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +70.1 KB
Content
image-20231206143515-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +89.5 KB
Content
image-20231206144950-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +41.0 KB
Content
image-20231206151412-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +58.8 KB
Content
image-20231206154621-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +71.2 KB
Content
image-20231206194804-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +53.7 KB
Content
image-20231206195704-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.1 KB
Content
image-20231207142208-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20231207144600-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +55.4 KB
Content
image-20231207144837-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20231207144856-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20231207145121-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +33.3 KB
Content
image-20231207153532-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +164.7 KB
Content
image-20231207154046-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20231207155940-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +41.7 KB
Content
image-20231207160053-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +95.5 KB
Content
image-20231207160343-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +80.5 KB
Content
image-20231207160733-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +136.0 KB
Content
image-20231209152917-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20231209155616-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +57.1 KB
Content
image-20231209171127-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +80.8 KB
Content
image-20231209171549-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +45.7 KB
Content
image-20231209173457-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +66.3 KB
Content
image-20231211113113-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.5 KB
Content
image-20231211113204-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +59.7 KB
Content
image-20231211114932-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +57.3 KB
Content
image-20231211220922-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +411.2 KB
Content
image-20231211221253-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +90.8 KB
Content
image-20231211221436-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +64.9 KB
Content