Last modified by Mengting Qiu on 2023/12/14 11:15

From version 109.11
edited by Xiaoling
on 2023/08/07 09:45
Change comment: There is no comment for this version
To version 113.6
edited by Xiaoling
on 2023/11/10 10:03
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DS20L -- LoRaWAN Smart Distance Detector User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20231110085342-2.png||height="481" width="481"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,178 +18,59 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Smart Distance Detector ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
31 31  
32 -LDS12-L(% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36 +[[image:image-20231110091506-4.png||height="391" width="768"]]
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 -
40 -
41 41  == 1.2 ​Features ==
42 42  
43 43  
44 -* LoRaWAN 1.0.3 Class A
45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 -* Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
51 -* Support Bluetooth v5.1 and LoRaWAN remote configure
52 -* Support wireless OTA update firmware
42 +* LoRaWAN Class A protocol
43 +* LiDAR distance detector, range 3 ~~ 200cm
44 +* Periodically detect or continuously detect mode
53 53  * AT Commands to change parameters
54 -* Downlink to change configure
55 -* 8500mAh Battery for long term use
46 +* Remotely configure parameters via LoRaWAN Downlink
47 +* Alarm & Counting mode
48 +* Datalog Feature
49 +* Firmware upgradable via program port or LoRa protocol
50 +* Built-in 2400mAh battery or power by external power source
56 56  
57 -
58 -
59 59  == 1.3 Specification ==
60 60  
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
55 +(% style="color:#037691" %)**LiDAR Sensor:**
63 63  
64 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
57 +* Operation Temperature: -40 ~~ 80 °C
58 +* Operation Humidity: 0~~99.9%RH (no Dew)
59 +* Storage Temperature: -10 ~~ 45°C
60 +* Measure Range: 3cm~~200cm @ 90% reflectivity
61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm)
62 +* ToF FoV: ±9°, Total 18°
63 +* Light source: VCSEL
66 66  
67 -(% style="color:#037691" %)**Probe Specification:**
68 68  
69 -* Storage temperature:-20℃~~75℃
70 -* Operating temperature : -20℃~~60℃
71 -* Measure Distance:
72 -** 0.1m ~~ 12m @ 90% Reflectivity
73 -** 0.1m ~~ 4m @ 10% Reflectivity
74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution : 5mm
76 -* Ambient light immunity : 70klux
77 -* Enclosure rating : IP65
78 -* Light source : LED
79 -* Central wavelength : 850nm
80 -* FOV : 3.6°
81 -* Material of enclosure : ABS+PC
82 -* Wire length : 25cm
83 -
84 -(% style="color:#037691" %)**LoRa Spec:**
85 -
86 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 -* Max +22 dBm constant RF output vs.
88 -* RX sensitivity: down to -139 dBm.
89 -* Excellent blocking immunity
90 -
91 -(% style="color:#037691" %)**Battery:**
92 -
93 -* Li/SOCI2 un-chargeable battery
94 -* Capacity: 8500mAh
95 -* Self-Discharge: <1% / Year @ 25°C
96 -* Max continuously current: 130mA
97 -* Max boost current: 2A, 1 second
98 -
99 -(% style="color:#037691" %)**Power Consumption**
100 -
101 -* Sleep Mode: 5uA @ 3.3v
102 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103 -
104 -
105 -
106 -== 1.4 Applications ==
107 -
108 -
109 -* Horizontal distance measurement
110 -* Parking management system
111 -* Object proximity and presence detection
112 -* Intelligent trash can management system
113 -* Robot obstacle avoidance
114 -* Automatic control
115 -* Sewer
116 -
117 -
118 -
119 119  (% style="display:none" %)
120 120  
121 -== 1.5 Sleep mode and working mode ==
122 122  
69 += 2. Configure DS20L to connect to LoRaWAN network =
123 123  
124 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125 -
126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127 -
128 -
129 -== 1.6 Button & LEDs ==
130 -
131 -
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133 -
134 -
135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 -)))
141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 -)))
146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147 -
148 -
149 -
150 -== 1.7 BLE connection ==
151 -
152 -
153 -LDS12-LB support BLE remote configure.
154 -
155 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
156 -
157 -* Press button to send an uplink
158 -* Press button to active device.
159 -* Device Power on or reset.
160 -
161 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162 -
163 -
164 -== 1.8 Pin Definitions ==
165 -
166 -
167 -[[image:image-20230805144259-1.png||height="413" width="741"]]
168 -
169 -== 1.9 Mechanical ==
170 -
171 -
172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173 -
174 -
175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
176 -
177 -
178 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
179 -
180 -
181 -(% style="color:blue" %)**Probe Mechanical:**
182 -
183 -
184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185 -
186 -
187 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
188 -
189 189  == 2.1 How it works ==
190 190  
191 191  
192 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
193 193  
194 194  (% style="display:none" %) (%%)
195 195  
... ... @@ -200,12 +200,12 @@
200 200  
201 201  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202 202  
203 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
204 204  
205 205  
206 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L.
207 207  
208 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
90 +Each DS20L is shipped with a sticker with the default device EUI as below:
209 209  
210 210  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
211 211  
... ... @@ -234,10 +234,10 @@
234 234  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
235 235  
236 236  
237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L
238 238  
239 239  
240 -Press the button for 5 seconds to activate the LDS12-LB.
122 +Press the button for 5 seconds to activate the DS20L.
241 241  
242 242  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243 243  
... ... @@ -249,7 +249,7 @@
249 249  === 2.3.1 Device Status, FPORT~=5 ===
250 250  
251 251  
252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server.
253 253  
254 254  The Payload format is as below.
255 255  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  [[image:image-20230805103904-1.png||height="131" width="711"]]
265 265  
266 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24
267 267  
268 268  (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
269 269  
... ... @@ -318,7 +318,7 @@
318 318  
319 319  
320 320  (((
321 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will:
322 322  
323 323  periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
324 324  
... ... @@ -343,7 +343,7 @@
343 343  ==== (% style="color:blue" %)**Battery Info**(%%) ====
344 344  
345 345  
346 -Check the battery voltage for LDS12-LB.
228 +Check the battery voltage for DS20L.
347 347  
348 348  Ex1: 0x0B45 = 2885mV
349 349  
... ... @@ -448,7 +448,7 @@
448 448  === 2.3.3 Historical measuring distance, FPORT~=3 ===
449 449  
450 450  
451 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
452 452  
453 453  The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
454 454  
... ... @@ -473,7 +473,7 @@
473 473  )))
474 474  
475 475  * (((
476 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands.
477 477  )))
478 478  
479 479  For example, in the US915 band, the max payload for different DR is:
... ... @@ -486,7 +486,7 @@
486 486  
487 487  **d) DR3:** total payload includes 22 entries of data.
488 488  
489 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0
490 490  
491 491  
492 492  **Downlink:**
... ... @@ -540,7 +540,7 @@
540 540  )))
541 541  
542 542  (((
543 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
425 +DS20L TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
544 544  )))
545 545  
546 546  
... ... @@ -569,7 +569,7 @@
569 569  
570 570  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
571 571  
572 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.**
573 573  
574 574  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
575 575  
... ... @@ -582,30 +582,27 @@
582 582  == 2.5 Datalog Feature ==
583 583  
584 584  
585 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes.
586 586  
587 587  
588 588  === 2.5.1 Ways to get datalog via LoRaWAN ===
589 589  
590 590  
591 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
592 592  
593 593  * (((
594 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server.
595 595  )))
596 596  * (((
597 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages.
598 598  )))
599 599  
600 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
601 601  
602 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
603 603  
604 -
605 605  === 2.5.2 Unix TimeStamp ===
606 606  
607 607  
608 -LDS12-LB uses Unix TimeStamp format based on
487 +DS20L uses Unix TimeStamp format based on
609 609  
610 610  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
611 611  
... ... @@ -624,7 +624,7 @@
624 624  
625 625  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
626 626  
627 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
628 628  
629 629  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
630 630  
... ... @@ -664,96 +664,8 @@
664 664  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
665 665  
666 666  
667 -== 2.7 LiDAR ToF Measurement ==
546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB
668 668  
669 -=== 2.7.1 Principle of Distance Measurement ===
670 -
671 -
672 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
673 -
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
675 -
676 -
677 -=== 2.7.2 Distance Measurement Characteristics ===
678 -
679 -
680 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
681 -
682 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
683 -
684 -
685 -(((
686 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
687 -)))
688 -
689 -(((
690 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
691 -)))
692 -
693 -(((
694 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
695 -)))
696 -
697 -
698 -(((
699 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
700 -)))
701 -
702 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
703 -
704 -(((
705 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
706 -)))
707 -
708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
709 -
710 -(((
711 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
712 -)))
713 -
714 -
715 -=== 2.7.3 Notice of usage ===
716 -
717 -
718 -Possible invalid /wrong reading for LiDAR ToF tech:
719 -
720 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
721 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
722 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
723 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
724 -
725 -
726 -
727 -=== 2.7.4  Reflectivity of different objects ===
728 -
729 -
730 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
731 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
732 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
733 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
734 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
735 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
736 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
737 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
738 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
739 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
740 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
741 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
742 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
743 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
744 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
745 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
746 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
747 -Unpolished white metal surface
748 -)))|(% style="width:93px" %)130%
749 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
750 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
751 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
752 -
753 -
754 -
755 -= 3. Configure LDS12-LB =
756 -
757 757  == 3.1 Configure Methods ==
758 758  
759 759  
... ... @@ -765,8 +765,6 @@
765 765  
766 766  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
767 767  
768 -
769 -
770 770  == 3.2 General Commands ==
771 771  
772 772  
... ... @@ -871,38 +871,6 @@
871 871  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
872 872  
873 873  
874 -
875 -=== 3.3.3  Set Power Output Duration ===
876 -
877 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
878 -
879 -~1. first enable the power output to external sensor,
880 -
881 -2. keep it on as per duration, read sensor value and construct uplink payload
882 -
883 -3. final, close the power output.
884 -
885 -(% style="color:blue" %)**AT Command: AT+3V3T**
886 -
887 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
888 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
889 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
890 -OK
891 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
892 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
893 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
894 -
895 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
896 -Format: Command Code (0x07) followed by 3 bytes.
897 -
898 -The first byte is 01,the second and third bytes are the time to turn on.
899 -
900 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
901 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
902 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
903 -
904 -
905 -
906 906  = 4. Battery & Power Consumption =
907 907  
908 908  
... ... @@ -923,7 +923,7 @@
923 923  
924 924  * Fix bugs.
925 925  
926 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]**
927 927  
928 928  Methods to Update Firmware:
929 929  
... ... @@ -931,8 +931,6 @@
931 931  
932 932  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
933 933  
934 -
935 -
936 936  = 6. FAQ =
937 937  
938 938  == 6.1 What is the frequency plan for LDS12-LB? ==
... ... @@ -973,7 +973,7 @@
973 973  = 8. Order Info =
974 974  
975 975  
976 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
731 +Part Number: (% style="color:blue" %)**DS20L-XXX**
977 977  
978 978  (% style="color:red" %)**XXX**(%%): **The default frequency band**
979 979  
... ... @@ -993,14 +993,12 @@
993 993  
994 994  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
995 995  
996 -
997 -
998 998  = 9. ​Packing Info =
999 999  
1000 1000  
1001 1001  (% style="color:#037691" %)**Package Includes**:
1002 1002  
1003 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
756 +* DS20L LoRaWAN Smart Distance Detector x 1
1004 1004  
1005 1005  (% style="color:#037691" %)**Dimension and weight**:
1006 1006  
... ... @@ -1012,8 +1012,6 @@
1012 1012  
1013 1013  * Weight / pcs : g
1014 1014  
1015 -
1016 -
1017 1017  = 10. Support =
1018 1018  
1019 1019  
image-20231110085300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +613.3 KB
Content
image-20231110085342-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +178.7 KB
Content
image-20231110091447-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content
image-20231110091506-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.4 KB
Content