Changes for page DS20L -- LoRaWAN Smart Distance Detector User Manual 01
Last modified by Mengting Qiu on 2023/12/14 11:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LDS12-LB-- LoRaWANLiDARToFDistanceSensor User Manual1 +DS20L -- LoRaWAN Smart Distance Detector User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-2023 0614153353-1.png]]2 +[[image:image-20231110085342-2.png||height="481" width="481"]] 3 3 4 4 5 5 ... ... @@ -7,6 +7,7 @@ 7 7 8 8 9 9 10 + 10 10 **Table of Contents:** 11 11 12 12 {{toc/}} ... ... @@ -18,178 +18,59 @@ 18 18 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is LoRaWAN LiDARToFDistanceSensor ==22 +== 1.1 What is LoRaWAN Smart Distance Detector == 22 22 23 23 24 -The Dragino LDS12-LB is a(% style="color:blue" %)**LoRaWANLiDARToF(Time of Flight)DistanceSensor**(%%)forInternetofThings solution. Itis capabletomeasure the distance toan objectas closeas 10centimeters(+/- 5cm up to 6m) andas far as 12 meters(+/-1%startingat6m)!.TheLiDAR probeuseslaser induction technologyfordistancemeasurement.25 +The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN. 25 25 26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 27 +DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 28 +consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on. 27 27 28 - Itdetects thedistance betweenthemeasuredobject andthe sensor,anduploadsthevalue viawirelesstoLoRaWANIoTServer.30 +DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.** 29 29 30 - TheLoRawirelesstechnologyused in LDS12-LB allowsdevice tosend data and reachextremelyngrangesatlowdata-rates.Itprovides ultra-long range spread spectrum communicationandhigh interferenceimmunity whilstminimizing currentconsumption.32 +DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway. 31 31 32 - LDS12-LB(% style="color:blue" %)**supports BLE configure**(%%)and (%style="color:blue"%)**wirelessOTAupdate**(%%) whichmakeuser easyto use.34 +DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 33 33 34 - LDS12-LBis powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%),it isdesigned for longterm use up to 5 years.36 +[[image:image-20231110091506-4.png||height="391" width="768"]] 35 35 36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 -[[image:image-20230615152941-1.png||height="459" width="800"]] 39 - 40 - 41 41 == 1.2 Features == 42 42 43 43 44 -* LoRaWAN 1.0.3 Class A 45 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 46 -* Ultra-low power consumption 47 -* Laser technology for distance detection 48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity 49 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 50 -* Monitor Battery Level 51 -* Support Bluetooth v5.1 and LoRaWAN remote configure 52 -* Support wireless OTA update firmware 42 +* LoRaWAN Class A protocol 43 +* LiDAR distance detector, range 3 ~~ 200cm 44 +* Periodically detect or continuously detect mode 53 53 * AT Commands to change parameters 54 -* Downlink to change configure 55 -* 8500mAh Battery for long term use 46 +* Remotely configure parameters via LoRaWAN Downlink 47 +* Alarm & Counting mode 48 +* Datalog Feature 49 +* Firmware upgradable via program port or LoRa protocol 50 +* Built-in 2400mAh battery or power by external power source 56 56 57 - 58 - 59 59 == 1.3 Specification == 60 60 61 61 62 -(% style="color:#037691" %)** CommonDCCharacteristics:**55 +(% style="color:#037691" %)**LiDAR Sensor:** 63 63 64 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 57 +* Operation Temperature: -40 ~~ 80 °C 58 +* Operation Humidity: 0~~99.9%RH (no Dew) 59 +* Storage Temperature: -10 ~~ 45°C 60 +* Measure Range: 3cm~~200cm @ 90% reflectivity 61 +* Accuracy: ±2cm @ (3cm~~100cm); ±5% @ (100~~200cm) 62 +* ToF FoV: ±9°, Total 18° 63 +* Light source: VCSEL 66 66 67 -(% style="color:#037691" %)**Probe Specification:** 68 68 69 -* Storage temperature:-20℃~~75℃ 70 -* Operating temperature : -20℃~~60℃ 71 -* Measure Distance: 72 -** 0.1m ~~ 12m @ 90% Reflectivity 73 -** 0.1m ~~ 4m @ 10% Reflectivity 74 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution : 5mm 76 -* Ambient light immunity : 70klux 77 -* Enclosure rating : IP65 78 -* Light source : LED 79 -* Central wavelength : 850nm 80 -* FOV : 3.6° 81 -* Material of enclosure : ABS+PC 82 -* Wire length : 25cm 83 - 84 -(% style="color:#037691" %)**LoRa Spec:** 85 - 86 -* Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 87 -* Max +22 dBm constant RF output vs. 88 -* RX sensitivity: down to -139 dBm. 89 -* Excellent blocking immunity 90 - 91 -(% style="color:#037691" %)**Battery:** 92 - 93 -* Li/SOCI2 un-chargeable battery 94 -* Capacity: 8500mAh 95 -* Self-Discharge: <1% / Year @ 25°C 96 -* Max continuously current: 130mA 97 -* Max boost current: 2A, 1 second 98 - 99 -(% style="color:#037691" %)**Power Consumption** 100 - 101 -* Sleep Mode: 5uA @ 3.3v 102 -* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 103 - 104 - 105 - 106 -== 1.4 Applications == 107 - 108 - 109 -* Horizontal distance measurement 110 -* Parking management system 111 -* Object proximity and presence detection 112 -* Intelligent trash can management system 113 -* Robot obstacle avoidance 114 -* Automatic control 115 -* Sewer 116 - 117 - 118 - 119 119 (% style="display:none" %) 120 120 121 -== 1.5 Sleep mode and working mode == 122 122 69 += 2. Configure DS20L to connect to LoRaWAN network = 123 123 124 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 125 - 126 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 127 - 128 - 129 -== 1.6 Button & LEDs == 130 - 131 - 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 133 - 134 - 135 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 136 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 137 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 138 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 139 -Meanwhile, BLE module will be active and user can connect via BLE to configure device. 140 -))) 141 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 142 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 143 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 144 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 145 -))) 146 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 147 - 148 - 149 - 150 -== 1.7 BLE connection == 151 - 152 - 153 -LDS12-LB support BLE remote configure. 154 - 155 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: 156 - 157 -* Press button to send an uplink 158 -* Press button to active device. 159 -* Device Power on or reset. 160 - 161 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. 162 - 163 - 164 -== 1.8 Pin Definitions == 165 - 166 - 167 -[[image:image-20230805144259-1.png||height="413" width="741"]] 168 - 169 -== 1.9 Mechanical == 170 - 171 - 172 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 173 - 174 - 175 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 176 - 177 - 178 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 179 - 180 - 181 -(% style="color:blue" %)**Probe Mechanical:** 182 - 183 - 184 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]] 185 - 186 - 187 -= 2. Configure LDS12-LB to connect to LoRaWAN network = 188 - 189 189 == 2.1 How it works == 190 190 191 191 192 -The LDS12-LBis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate theLDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.74 +The DS20L is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DS20L. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 193 193 194 194 (% style="display:none" %) (%%) 195 195 ... ... @@ -200,12 +200,12 @@ 200 200 201 201 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 202 202 203 -[[image:image-2023 0615153004-2.png||height="459" width="800"]](% style="display:none" %)85 +[[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %) 204 204 205 205 206 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.88 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DS20L. 207 207 208 -Each LDS12-LBis shipped with a sticker with the default device EUI as below:90 +Each DS20L is shipped with a sticker with the default device EUI as below: 209 209 210 210 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 211 211 ... ... @@ -234,10 +234,10 @@ 234 234 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 235 235 236 236 237 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB119 +(% style="color:blue" %)**Step 2:**(%%) Activate on DS20L 238 238 239 239 240 -Press the button for 5 seconds to activate the LDS12-LB.122 +Press the button for 5 seconds to activate the DS20L. 241 241 242 242 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 243 243 ... ... @@ -249,7 +249,7 @@ 249 249 === 2.3.1 Device Status, FPORT~=5 === 250 250 251 251 252 -Users can use the downlink command(**0x26 01**) to ask LDS12-LBto send device configure detail, include device configure status.LDS12-LBwill uplink a payload via FPort=5 to server.134 +Users can use the downlink command(**0x26 01**) to ask DS20L to send device configure detail, include device configure status. DS20L will uplink a payload via FPort=5 to server. 253 253 254 254 The Payload format is as below. 255 255 ... ... @@ -263,7 +263,7 @@ 263 263 264 264 [[image:image-20230805103904-1.png||height="131" width="711"]] 265 265 266 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24148 +(% style="color:blue" %)**Sensor Model**(%%): For DS20L, this value is 0x24 267 267 268 268 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 269 269 ... ... @@ -318,7 +318,7 @@ 318 318 319 319 320 320 ((( 321 - LDS12-LBwill send this uplink **after** Device Status once join the LoRaWAN network successfully. AndLDS12-LBwill:203 +DS20L will send this uplink **after** Device Status once join the LoRaWAN network successfully. And DS20L will: 322 322 323 323 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]]. 324 324 ... ... @@ -343,7 +343,7 @@ 343 343 ==== (% style="color:blue" %)**Battery Info**(%%) ==== 344 344 345 345 346 -Check the battery voltage for LDS12-LB.228 +Check the battery voltage for DS20L. 347 347 348 348 Ex1: 0x0B45 = 2885mV 349 349 ... ... @@ -448,7 +448,7 @@ 448 448 === 2.3.3 Historical measuring distance, FPORT~=3 === 449 449 450 450 451 - LDS12-LBstores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].333 +DS20L stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]]. 452 452 453 453 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance. 454 454 ... ... @@ -473,7 +473,7 @@ 473 473 ))) 474 474 475 475 * ((( 476 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LBwill send max bytes according to the current DR and Frequency bands.358 +Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, DS20L will send max bytes according to the current DR and Frequency bands. 477 477 ))) 478 478 479 479 For example, in the US915 band, the max payload for different DR is: ... ... @@ -486,7 +486,7 @@ 486 486 487 487 **d) DR3:** total payload includes 22 entries of data. 488 488 489 -If LDS12-LBdoesn't have any data in the polling time. It will uplink 11 bytes of 0371 +If DS20L doesn't have any data in the polling time. It will uplink 11 bytes of 0 490 490 491 491 492 492 **Downlink:** ... ... @@ -540,7 +540,7 @@ 540 540 ))) 541 541 542 542 ((( 543 - LDS12-LBTTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]425 +DS20L TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 544 544 ))) 545 545 546 546 ... ... @@ -569,7 +569,7 @@ 569 569 570 570 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 571 571 572 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LBand add DevEUI.**454 +(% style="color:blue" %)**Step 4**(%%)**: Search the DS20L and add DevEUI.** 573 573 574 574 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]] 575 575 ... ... @@ -582,30 +582,27 @@ 582 582 == 2.5 Datalog Feature == 583 583 584 584 585 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LBwill store the reading for future retrieving purposes.467 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DS20L will store the reading for future retrieving purposes. 586 586 587 587 588 588 === 2.5.1 Ways to get datalog via LoRaWAN === 589 589 590 590 591 -Set PNACKMD=1, LDS12-LBwill wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LBwill mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.473 +Set PNACKMD=1, DS20L will wait for ACK for every uplink, when there is no LoRaWAN network, DS20L will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 592 592 593 593 * ((( 594 -a) LDS12-LBwill do an ACK check for data records sending to make sure every data arrive server.476 +a) DS20L will do an ACK check for data records sending to make sure every data arrive server. 595 595 ))) 596 596 * ((( 597 -b) LDS12-LBwill send data in **CONFIRMED Mode** when PNACKMD=1, butLDS12-LBwon't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink ifLDS12-LBgets a ACK,LDS12-LBwill consider there is a network connection and resend all NONE-ACK messages.479 +b) DS20L will send data in **CONFIRMED Mode** when PNACKMD=1, but DS20L won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DS20L gets a ACK, DS20L will consider there is a network connection and resend all NONE-ACK messages. 598 598 ))) 599 599 600 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 601 601 602 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 603 603 604 - 605 605 === 2.5.2 Unix TimeStamp === 606 606 607 607 608 - LDS12-LBuses Unix TimeStamp format based on487 +DS20L uses Unix TimeStamp format based on 609 609 610 610 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 611 611 ... ... @@ -624,7 +624,7 @@ 624 624 625 625 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 626 626 627 -Once LDS12-LBJoined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time toLDS12-LB. IfLDS12-LBfails to get the time from the server,LDS12-LBwill use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).506 +Once DS20L Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DS20L. If DS20L fails to get the time from the server, DS20L will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 628 628 629 629 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 630 630 ... ... @@ -664,96 +664,8 @@ 664 664 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 665 665 666 666 667 - ==2.7 LiDARToF Measurement==546 +(% style="color:inherit; font-family:inherit; font-size:29px" %)3. Configure LDS12-LB 668 668 669 -=== 2.7.1 Principle of Distance Measurement === 670 - 671 - 672 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below. 673 - 674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]] 675 - 676 - 677 -=== 2.7.2 Distance Measurement Characteristics === 678 - 679 - 680 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below: 681 - 682 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]] 683 - 684 - 685 -((( 686 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 687 -))) 688 - 689 -((( 690 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 691 -))) 692 - 693 -((( 694 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 695 -))) 696 - 697 - 698 -((( 699 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 700 -))) 701 - 702 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]] 703 - 704 -((( 705 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 706 -))) 707 - 708 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]] 709 - 710 -((( 711 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 712 -))) 713 - 714 - 715 -=== 2.7.3 Notice of usage === 716 - 717 - 718 -Possible invalid /wrong reading for LiDAR ToF tech: 719 - 720 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 721 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong. 722 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 723 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window. 724 - 725 - 726 - 727 -=== 2.7.4 Reflectivity of different objects === 728 - 729 - 730 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %) 731 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity 732 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4% 733 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3% 734 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4% 735 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8% 736 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5% 737 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10% 738 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14% 739 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20% 740 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62% 741 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68% 742 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70% 743 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87% 744 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90% 745 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100% 746 -|(% style="width:53px" %)15|(% style="width:229px" %)((( 747 -Unpolished white metal surface 748 -)))|(% style="width:93px" %)130% 749 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150% 750 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200% 751 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300% 752 - 753 - 754 - 755 -= 3. Configure LDS12-LB = 756 - 757 757 == 3.1 Configure Methods == 758 758 759 759 ... ... @@ -765,8 +765,6 @@ 765 765 766 766 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 767 767 768 - 769 - 770 770 == 3.2 General Commands == 771 771 772 772 ... ... @@ -871,38 +871,6 @@ 871 871 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 872 872 873 873 874 - 875 -=== 3.3.3 Set Power Output Duration === 876 - 877 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will 878 - 879 -~1. first enable the power output to external sensor, 880 - 881 -2. keep it on as per duration, read sensor value and construct uplink payload 882 - 883 -3. final, close the power output. 884 - 885 -(% style="color:blue" %)**AT Command: AT+3V3T** 886 - 887 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 888 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 889 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) 890 -OK 891 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK 892 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK 893 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK 894 - 895 -(% style="color:blue" %)**Downlink Command: 0x07**(%%) 896 -Format: Command Code (0x07) followed by 3 bytes. 897 - 898 -The first byte is 01,the second and third bytes are the time to turn on. 899 - 900 -* Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 901 -* Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 902 -* Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 903 - 904 - 905 - 906 906 = 4. Battery & Power Consumption = 907 907 908 908 ... ... @@ -923,7 +923,7 @@ 923 923 924 924 * Fix bugs. 925 925 926 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**683 +Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/sh/zqv1vt3komgp4tu/AAC33PnXIcWOVl_UXBEAeT_xa?dl=0]]** 927 927 928 928 Methods to Update Firmware: 929 929 ... ... @@ -931,8 +931,6 @@ 931 931 932 932 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 933 933 934 - 935 - 936 936 = 6. FAQ = 937 937 938 938 == 6.1 What is the frequency plan for LDS12-LB? == ... ... @@ -973,7 +973,7 @@ 973 973 = 8. Order Info = 974 974 975 975 976 -Part Number: (% style="color:blue" %)** LDS12-LB-XXX**731 +Part Number: (% style="color:blue" %)**DS20L-XXX** 977 977 978 978 (% style="color:red" %)**XXX**(%%): **The default frequency band** 979 979 ... ... @@ -993,14 +993,12 @@ 993 993 994 994 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 995 995 996 - 997 - 998 998 = 9. Packing Info = 999 999 1000 1000 1001 1001 (% style="color:#037691" %)**Package Includes**: 1002 1002 1003 -* LDS12-LBLoRaWANLiDARToFDistanceSensor x 1756 +* DS20L LoRaWAN Smart Distance Detector x 1 1004 1004 1005 1005 (% style="color:#037691" %)**Dimension and weight**: 1006 1006 ... ... @@ -1012,8 +1012,6 @@ 1012 1012 1013 1013 * Weight / pcs : g 1014 1014 1015 - 1016 - 1017 1017 = 10. Support = 1018 1018 1019 1019
- image-20231110085300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +613.3 KB - Content
- image-20231110085342-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +178.7 KB - Content
- image-20231110091447-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content
- image-20231110091506-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.4 KB - Content