Last modified by Mengting Qiu on 2023/12/14 11:15

From version 104.1
edited by Saxer Lin
on 2023/08/05 15:55
Change comment: There is no comment for this version
To version 80.2
edited by Xiaoling
on 2023/06/14 15:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -21,21 +21,21 @@
21 21  == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
26 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 27  
28 28  It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
30 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
32 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
38 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,16 +44,19 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
47 +* Liquid Level Measurement by Ultrasonic technology
48 +* Measure through container, No need to contact Liquid
49 +* Valid level range 20mm - 2000mm
50 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
51 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
56 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
59 +
57 57  == 1.3 Specification ==
58 58  
59 59  
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,308 +99,322 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
103 103  
89 +== 1.4 Suitable Container & Liquid ==
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
112 112  
113 -(% style="display:none" %)
92 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
93 +* Container shape is regular, and surface is smooth.
94 +* Container Thickness:
95 +** Pure metal material.  2~~8mm, best is 3~~5mm
96 +** Pure non metal material: <10 mm
97 +* Pure liquid without irregular deposition.
114 114  
115 -== 1.5 Sleep mode and working mode ==
116 116  
100 +(% style="display:none" %)
117 117  
118 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
102 +== 1.5 Install DDS20-LB ==
119 119  
120 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 121  
105 +(% style="color:blue" %)**Step 1**(%%):  ** Choose the installation point.**
122 122  
123 -== 1.6 Button & LEDs ==
107 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
124 124  
109 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
125 125  
126 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127 127  
112 +(((
113 +(% style="color:blue" %)**Step 2**(%%):  **Polish the installation point.**
114 +)))
128 128  
129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 -Meanwhile, BLE module will be active and user can connect via BLE to configure device.
116 +(((
117 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
134 134  )))
135 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 -Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 -)))
140 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
120 +[[image:image-20230613143052-5.png]]
143 143  
144 144  
145 -LDS12-LB support BLE remote configure.
123 +No polish needed if the container is shine metal surface without paint or non-metal container.
146 146  
147 -BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
125 +[[image:image-20230613143125-6.png]]
148 148  
149 -* Press button to send an uplink
150 -* Press button to active device.
151 -* Device Power on or reset.
152 152  
153 -If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
128 +(((
129 +(% style="color:blue" %)**Step3:   **(%%)**Test the installation point.**
130 +)))
154 154  
132 +(((
133 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
134 +)))
155 155  
156 -== 1.8 Pin Definitions ==
136 +(((
137 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
138 +)))
157 157  
140 +(((
141 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
142 +)))
158 158  
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 160  
161 -== 1.9 Mechanical ==
145 +(((
146 +(% style="color:blue" %)**LED Status:**
147 +)))
162 162  
149 +* (((
150 +**Onboard LED**: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
151 +)))
163 163  
164 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
153 +* (((
154 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
155 +)))
156 +* (((
157 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
158 +)))
165 165  
160 +(((
161 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
162 +)))
166 166  
167 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168 168  
165 +(((
166 +(% style="color:red" %)**Note :**(%%)** (% style="color:blue" %)Ultrasonic coupling paste(%%)**(% style="color:blue" %) (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
167 +)))
169 169  
170 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171 171  
170 +(((
171 +(% style="color:blue" %)**Step4:   **(%%)**Install use Epoxy ab glue.**
172 +)))
172 172  
173 -(% style="color:blue" %)**Probe Mechanical:**
174 +(((
175 +Prepare Eproxy AB glue.
176 +)))
174 174  
178 +(((
179 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
180 +)))
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
182 +(((
183 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
184 +)))
177 177  
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
178 178  
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 180  
181 -== 2.1 How it works ==
189 +(((
190 +(% style="color:red" %)**Note :**
182 182  
192 +(% style="color:red" %)**1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
193 +)))
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
195 +(((
196 +(% style="color:red" %)**2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
197 +)))
185 185  
186 -(% style="display:none" %) (%%)
187 187  
188 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
200 +== 1.6 Applications ==
189 189  
190 190  
191 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
203 +* Smart liquid control solution
192 192  
193 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
205 +* Smart liquefied gas solution
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
196 196  
208 +== 1.7 Precautions ==
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
211 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
201 201  
202 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
213 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
203 203  
215 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.
204 204  
205 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
217 +(% style="display:none" %)
206 206  
219 +== 1.8 Sleep mode and working mode ==
207 207  
208 -(% style="color:blue" %)**Register the device**
209 209  
210 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
222 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
211 211  
224 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
212 212  
213 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
214 214  
215 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
227 +== 1.9 Button & LEDs ==
216 216  
217 217  
218 -(% style="color:blue" %)**Add APP EUI in the application**
230 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
219 219  
220 220  
221 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
235 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
236 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
237 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
238 +)))
239 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
240 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
241 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
242 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
243 +)))
244 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
222 222  
223 223  
224 -(% style="color:blue" %)**Add APP KEY**
247 +== 1.10 BLE connection ==
225 225  
226 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
250 +DDS20-LB support BLE remote configure.
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
252 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
230 230  
254 +* Press button to send an uplink
255 +* Press button to active device.
256 +* Device Power on or reset.
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
258 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
233 233  
234 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
236 -After join success, it will start to upload messages to TTN and you can see the messages in the panel.
261 +== 1.11 Pin Definitions ==
237 237  
263 +[[image:image-20230523174230-1.png]]
238 238  
239 -== 2.3 ​Uplink Payload ==
240 240  
241 -=== 2.3.1 Device Status, FPORT~=5 ===
266 +== 1.12 Mechanical ==
242 242  
243 243  
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
269 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
245 245  
246 -The Payload format is as below.
247 247  
248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 -**Size(bytes)**
251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
272 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
253 253  
254 -Example parse in TTNv3
255 255  
256 -[[image:image-20230805103904-1.png||height="131" width="711"]]
275 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
257 257  
258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
259 259  
260 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
278 +(% style="color:blue" %)**Probe Mechanical:**
261 261  
262 -(% style="color:blue" %)**Frequency Band**:
280 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
263 263  
264 -0x01: EU868
265 265  
266 -0x02: US915
283 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
267 267  
268 -0x03: IN865
269 269  
270 -0x04: AU915
286 += 2. Configure DDS20-LB to connect to LoRaWAN network =
271 271  
272 -0x05: KZ865
288 +== 2.1 How it works ==
273 273  
274 -0x06: RU864
275 275  
276 -0x07: AS923
291 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
277 277  
278 -0x08: AS923-1
293 +(% style="display:none" %) (%%)
279 279  
280 -0x09: AS923-2
295 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
281 281  
282 -0x0a: AS923-3
283 283  
284 -0x0b: CN470
298 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
285 285  
286 -0x0c: EU433
300 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
287 287  
288 -0x0d: KR920
302 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
289 289  
290 -0x0e: MA869
291 291  
292 -(% style="color:blue" %)**Sub-Band**:
305 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
293 293  
294 -AU915 and US915:value 0x00 ~~ 0x08
307 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
295 295  
296 -CN470: value 0x0B ~~ 0x0C
309 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
297 297  
298 -Other Bands: Always 0x00
299 299  
300 -(% style="color:blue" %)**Battery Info**:
312 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
301 301  
302 -Check the battery voltage.
303 303  
304 -Ex1: 0x0B45 = 2885mV
315 +(% style="color:blue" %)**Register the device**
305 305  
306 -Ex2: 0x0B49 = 2889mV
317 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
307 307  
308 308  
309 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
320 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
310 310  
322 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
311 311  
312 -(((
313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
314 314  
315 -periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]].
325 +(% style="color:blue" %)**Add APP EUI in the application**
316 316  
317 -Uplink Payload totals 11 bytes.
318 -)))
319 319  
320 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
322 -**Size(bytes)**
323 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
324 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
327 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 -[[Message Type>>||anchor="HMessageType"]]
330 -)))
328 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
331 331  
332 -[[image:image-20230805104104-2.png||height="136" width="754"]]
333 333  
331 +(% style="color:blue" %)**Add APP KEY**
334 334  
335 -==== (% style="color:blue" %)**Battery Info**(%%) ====
333 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
336 336  
337 337  
338 -Check the battery voltage for LDS12-LB.
336 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
339 339  
340 -Ex1: 0x0B45 = 2885mV
341 341  
342 -Ex2: 0x0B49 = 2889mV
339 +Press the button for 5 seconds to activate the DDS20-LB.
343 343  
341 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
344 344  
345 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
343 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
346 346  
347 347  
348 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
346 +== 2.3  ​Uplink Payload ==
349 349  
350 350  
351 -**Example**:
349 +(((
350 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
351 +)))
352 352  
353 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
353 +(((
354 +Uplink payload includes in total 8 bytes.
355 +)))
354 354  
355 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
357 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
358 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
359 +**Size(bytes)**
360 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
361 +|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
362 +[[Distance>>||anchor="H2.3.2A0Distance"]]
363 +(unit: mm)
364 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
365 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
366 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
356 356  
368 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
357 357  
358 -==== (% style="color:blue" %)**Distance**(%%) ====
359 359  
371 +=== 2.3.1  Battery Info ===
360 360  
361 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362 362  
374 +Check the battery voltage for DDS20-LB.
363 363  
364 -**Example**:
376 +Ex1: 0x0B45 = 2885mV
365 365  
366 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
378 +Ex2: 0x0B49 = 2889mV
367 367  
368 368  
369 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
381 +=== 2.3.2  Distance ===
370 370  
371 371  
372 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
384 +(((
385 +Get the distance. Flat object range 20mm - 2000mm.
386 +)))
373 373  
388 +(((
389 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
374 374  
375 -**Example**:
391 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
392 +)))
376 376  
377 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
394 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
378 378  
379 -Customers can judge whether they need to adjust the environment based on the signal strength.
396 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
380 380  
381 381  
382 -**1) When the sensor detects valid data:**
399 +=== 2.3.3  Interrupt Pin ===
383 383  
384 -[[image:image-20230805155335-1.png||height="145" width="724"]]
385 385  
386 -
387 -**2) When the sensor detects invalid data:**
388 -
389 -[[image:image-20230805155428-2.png||height="139" width="726"]]
390 -
391 -
392 -**3) When the sensor is not connected:**
393 -
394 -[[image:image-20230805155515-3.png||height="143" width="725"]]
395 -
396 -
397 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
398 -
399 -
400 400  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
401 401  
402 -Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]].
403 -
404 404  **Example:**
405 405  
406 406  0x00: Normal uplink packet.
... ... @@ -408,137 +408,54 @@
408 408  0x01: Interrupt Uplink Packet.
409 409  
410 410  
411 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
411 +=== 2.3.4  DS18B20 Temperature sensor ===
412 412  
413 413  
414 -Characterize the internal temperature value of the sensor.
414 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
415 415  
416 -**Example: **
417 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
418 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
416 +**Example**:
419 419  
418 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
420 420  
421 -==== (% style="color:blue" %)**Message Type**(%%) ====
420 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
422 422  
423 423  
423 +=== 2.3.5  Sensor Flag ===
424 +
425 +
424 424  (((
425 -For a normal uplink payload, the message type is always 0x01.
427 +0x01: Detect Ultrasonic Sensor
426 426  )))
427 427  
428 428  (((
429 -Valid Message Type:
431 +0x00: No Ultrasonic Sensor
430 430  )))
431 431  
432 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
433 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
434 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
435 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
436 436  
437 -[[image:image-20230805150315-4.png||height="233" width="723"]]
435 +=== 2.3.6  Decode payload in The Things Network ===
438 438  
439 439  
440 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
438 +While using TTN network, you can add the payload format to decode the payload.
441 441  
442 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.5.4Pollsensorvalue]].
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
443 443  
444 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
442 +The payload decoder function for TTN V3 is here:
445 445  
446 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
448 -**Size(bytes)**
449 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
450 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
451 -Reserve(0xFF)
452 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
453 -LiDAR temp
454 -)))|(% style="width:85px" %)Unix TimeStamp
455 -
456 -**Interrupt flag & Interrupt level:**
457 -
458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
459 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
460 -**Size(bit)**
461 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
462 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
463 -Interrupt flag
444 +(((
445 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
464 464  )))
465 465  
466 -* (((
467 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
468 -)))
469 469  
470 -For example, in the US915 band, the max payload for different DR is:
449 +== 2.4  Uplink Interval ==
471 471  
472 -**a) DR0:** max is 11 bytes so one entry of data
473 473  
474 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
452 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
475 475  
476 -**c) DR2:** total payload includes 11 entries of data
477 477  
478 -**d) DR3:** total payload includes 22 entries of data.
455 +== 2.5  ​Show Data in DataCake IoT Server ==
479 479  
480 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
481 481  
482 -
483 -**Downlink:**
484 -
485 -0x31 64 CC 68 0C 64 CC 69 74 05
486 -
487 -[[image:image-20230805144936-2.png||height="113" width="746"]]
488 -
489 -**Uplink:**
490 -
491 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
492 -
493 -
494 -**Parsed Value:**
495 -
496 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
497 -
498 -
499 -[360,176,30,High,True,2023-08-04 02:53:00],
500 -
501 -[355,168,30,Low,False,2023-08-04 02:53:29],
502 -
503 -[245,211,30,Low,False,2023-08-04 02:54:29],
504 -
505 -[57,700,30,Low,False,2023-08-04 02:55:29],
506 -
507 -[361,164,30,Low,True,2023-08-04 02:56:00],
508 -
509 -[337,184,30,Low,False,2023-08-04 02:56:40],
510 -
511 -[20,4458,30,Low,False,2023-08-04 02:57:40],
512 -
513 -[362,173,30,Low,False,2023-08-04 02:58:53],
514 -
515 -
516 -History read from serial port:
517 -
518 -[[image:image-20230805145056-3.png]]
519 -
520 -
521 -=== 2.3.4 Decode payload in The Things Network ===
522 -
523 -
524 -While using TTN network, you can add the payload format to decode the payload.
525 -
526 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
527 -
528 -
529 529  (((
530 -The payload decoder function for TTN is here:
531 -)))
532 -
533 -(((
534 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
535 -)))
536 -
537 -
538 -== 2.4 ​Show Data in DataCake IoT Server ==
539 -
540 -
541 -(((
542 542  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
543 543  )))
544 544  
... ... @@ -560,7 +560,7 @@
560 560  
561 561  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
562 562  
563 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
480 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
564 564  
565 565  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
566 566  
... ... @@ -570,22 +570,22 @@
570 570  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
571 571  
572 572  
573 -== 2.5 Datalog Feature ==
490 +== 2.6 Datalog Feature ==
574 574  
575 575  
576 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
493 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
577 577  
578 578  
579 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
496 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
580 580  
581 581  
582 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
499 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
583 583  
584 584  * (((
585 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
502 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
586 586  )))
587 587  * (((
588 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
505 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
589 589  )))
590 590  
591 591  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -593,10 +593,10 @@
593 593  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
594 594  
595 595  
596 -=== 2.5.2 Unix TimeStamp ===
513 +=== 2.6.2 Unix TimeStamp ===
597 597  
598 598  
599 -LDS12-LB uses Unix TimeStamp format based on
516 +DDS20-LB uses Unix TimeStamp format based on
600 600  
601 601  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
602 602  
... ... @@ -610,23 +610,23 @@
610 610  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
611 611  
612 612  
613 -=== 2.5.3 Set Device Time ===
530 +=== 2.6.3 Set Device Time ===
614 614  
615 615  
616 616  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
617 617  
618 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
535 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
619 619  
620 620  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
621 621  
622 622  
623 -=== 2.5.4 Poll sensor value ===
540 +=== 2.6.4 Poll sensor value ===
624 624  
625 625  
626 626  Users can poll sensor values based on timestamps. Below is the downlink command.
627 627  
628 628  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
629 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
546 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
630 630  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
631 631  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
632 632  
... ... @@ -643,108 +643,24 @@
643 643  )))
644 644  
645 645  (((
646 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
563 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
647 647  )))
648 648  
649 649  
650 -== 2.6 Frequency Plans ==
567 +== 2.7 Frequency Plans ==
651 651  
652 652  
653 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
570 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
654 654  
655 655  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
656 656  
657 657  
658 -== 2.7 LiDAR ToF Measurement ==
575 += 3. Configure DDS20-LB =
659 659  
660 -=== 2.7.1 Principle of Distance Measurement ===
661 -
662 -
663 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
664 -
665 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
666 -
667 -
668 -=== 2.7.2 Distance Measurement Characteristics ===
669 -
670 -
671 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
672 -
673 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
674 -
675 -
676 -(((
677 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
678 -)))
679 -
680 -(((
681 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
682 -)))
683 -
684 -(((
685 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
686 -)))
687 -
688 -
689 -(((
690 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
691 -)))
692 -
693 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
694 -
695 -(((
696 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
697 -)))
698 -
699 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
700 -
701 -(((
702 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
703 -)))
704 -
705 -
706 -=== 2.7.3 Notice of usage ===
707 -
708 -
709 -Possible invalid /wrong reading for LiDAR ToF tech:
710 -
711 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
712 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
713 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
714 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
715 -
716 -=== 2.7.4  Reflectivity of different objects ===
717 -
718 -
719 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
720 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
721 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
722 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
723 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
724 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
725 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
726 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
727 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
728 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
729 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
730 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
731 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
732 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
733 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
734 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
735 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
736 -Unpolished white metal surface
737 -)))|(% style="width:93px" %)130%
738 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
739 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
740 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
741 -
742 -= 3. Configure LDS12-LB =
743 -
744 744  == 3.1 Configure Methods ==
745 745  
746 746  
747 -LDS12-LB supports below configure method:
580 +DDS20-LB supports below configure method:
748 748  
749 749  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
750 750  
... ... @@ -752,6 +752,7 @@
752 752  
753 753  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
754 754  
588 +
755 755  == 3.2 General Commands ==
756 756  
757 757  
... ... @@ -766,10 +766,10 @@
766 766  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
767 767  
768 768  
769 -== 3.3 Commands special design for LDS12-LB ==
603 +== 3.3 Commands special design for DDS20-LB ==
770 770  
771 771  
772 -These commands only valid for LDS12-LB, as below:
606 +These commands only valid for DDS20-LB, as below:
773 773  
774 774  
775 775  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -784,7 +784,7 @@
784 784  )))
785 785  
786 786  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
787 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
621 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
788 788  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
789 789  30000
790 790  OK
... ... @@ -827,7 +827,7 @@
827 827  (% style="color:blue" %)**AT Command: AT+INTMOD**
828 828  
829 829  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
830 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
664 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
831 831  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
832 832  0
833 833  OK
... ... @@ -851,39 +851,11 @@
851 851  
852 852  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
853 853  
854 -=== 3.3.3  Set Power Output Duration ===
855 855  
856 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
857 -
858 -~1. first enable the power output to external sensor,
859 -
860 -2. keep it on as per duration, read sensor value and construct uplink payload
861 -
862 -3. final, close the power output.
863 -
864 -(% style="color:blue" %)**AT Command: AT+3V3T**
865 -
866 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
867 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
868 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
869 -OK
870 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
871 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
872 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
873 -
874 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
875 -Format: Command Code (0x07) followed by 3 bytes.
876 -
877 -The first byte is 01,the second and third bytes are the time to turn on.
878 -
879 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
880 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
881 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
882 -
883 883  = 4. Battery & Power Consumption =
884 884  
885 885  
886 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
692 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
887 887  
888 888  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
889 889  
... ... @@ -892,7 +892,7 @@
892 892  
893 893  
894 894  (% class="wikigeneratedid" %)
895 -User can change firmware LDS12-LB to:
701 +User can change firmware DDS20-LB to:
896 896  
897 897  * Change Frequency band/ region.
898 898  
... ... @@ -900,7 +900,7 @@
900 900  
901 901  * Fix bugs.
902 902  
903 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
709 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
904 904  
905 905  Methods to Update Firmware:
906 906  
... ... @@ -908,40 +908,42 @@
908 908  
909 909  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
910 910  
717 +
911 911  = 6. FAQ =
912 912  
913 -== 6.1 What is the frequency plan for LDS12-LB? ==
720 +== 6.1  What is the frequency plan for DDS20-LB? ==
914 914  
915 915  
916 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
723 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
917 917  
918 918  
919 -= 7Trouble Shooting =
726 +== 6.2  Can I use DDS20-LB in condensation environment? ==
920 920  
921 -== 7.1 AT Command input doesn't work ==
922 922  
729 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
923 923  
924 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
925 925  
732 += 7.  Trouble Shooting =
926 926  
927 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
734 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
928 928  
929 929  
930 -(((
931 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
932 -)))
737 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
933 933  
934 -(((
935 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
936 -)))
937 937  
740 +== 7.2  AT Command input doesn't work ==
938 938  
939 -(((
940 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
941 -)))
942 942  
743 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
744 +
745 +
746 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
747 +
748 +
943 943  (((
944 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
750 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
751 +
752 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
945 945  )))
946 946  
947 947  
... ... @@ -948,7 +948,7 @@
948 948  = 8. Order Info =
949 949  
950 950  
951 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
759 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
952 952  
953 953  (% style="color:red" %)**XXX**(%%): **The default frequency band**
954 954  
... ... @@ -968,12 +968,13 @@
968 968  
969 969  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
970 970  
779 +
971 971  = 9. ​Packing Info =
972 972  
973 973  
974 974  (% style="color:#037691" %)**Package Includes**:
975 975  
976 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
785 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
977 977  
978 978  (% style="color:#037691" %)**Dimension and weight**:
979 979  
... ... @@ -985,6 +985,7 @@
985 985  
986 986  * Weight / pcs : g
987 987  
797 +
988 988  = 10. Support =
989 989  
990 990  
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content