Last modified by Mengting Qiu on 2023/12/14 11:15

From version 104.1
edited by Saxer Lin
on 2023/08/05 15:55
Change comment: There is no comment for this version
To version 79.15
edited by Xiaoling
on 2023/06/13 15:23
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDS12-LB -- LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +DDS20-LB -- LoRaWAN Ultrasonic Liquid Level Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20230614153353-1.png]]
2 +[[image:image-20230613133716-2.png||height="717" width="717"]]
3 3  
4 4  
5 5  
... ... @@ -7,6 +7,7 @@
7 7  
8 8  
9 9  
10 +
10 10  **Table of Contents:**
11 11  
12 12  {{toc/}}
... ... @@ -18,24 +18,24 @@
18 18  
19 19  = 1. Introduction =
20 20  
21 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22 +== 1.1 What is LoRaWAN Ultrasonic liquid level Sensor ==
22 22  
23 23  
24 -The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25 +The Dragino DDS20-LB is a (% style="color:blue" %)**LoRaWAN Ultrasonic liquid level sensor**(%%) for Internet of Things solution. It uses (% style="color:blue" %)**none-contact method **(%%)to measure the (% style="color:blue" %)**height of liquid**(%%) in a container without opening the container, and send the value via LoRaWAN network to IoT Server.
25 25  
26 -The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27 +The DDS20-LB sensor is installed directly below the container to detect the height of the liquid level. User doesn't need to open a hole on the container to be tested. The none-contact measurement makes the measurement safety, easier and possible for some strict situation. 
27 27  
28 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29 +DDS20-LB uses (% style="color:blue" %)**ultrasonic sensing technology**(%%) for distance measurement. DDS20-LB is of high accuracy to measure various liquid such as: (% style="color:blue" %)**toxic substances**(%%), (% style="color:blue" %)**strong acids**(%%), (% style="color:blue" %)**strong alkalis**(%%) and (% style="color:blue" %)**various pure liquids**(%%) in high-temperature and high-pressure airtight containers.
29 29  
30 -The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +The LoRa wireless technology used in DDS20-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 31  
32 -LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 +DDS20-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33 33  
34 -LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 +DDS20-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35 35  
36 -Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 +Each DDS20-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 -[[image:image-20230615152941-1.png||height="459" width="800"]]
39 +[[image:image-20230613140115-3.png||height="453" width="800"]]
39 39  
40 40  
41 41  == 1.2 ​Features ==
... ... @@ -44,16 +44,20 @@
44 44  * LoRaWAN 1.0.3 Class A
45 45  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 46  * Ultra-low power consumption
47 -* Laser technology for distance detection
48 -* Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 -* Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 -* Monitor Battery Level
48 +* Liquid Level Measurement by Ultrasonic technology
49 +* Measure through container, No need to contact Liquid
50 +* Valid level range 20mm - 2000mm
51 +* Accuracy: ±(5mm+S*0.5%) (S: Measure Value)
52 +* Cable Length : 25cm
51 51  * Support Bluetooth v5.1 and LoRaWAN remote configure
52 52  * Support wireless OTA update firmware
53 53  * AT Commands to change parameters
54 54  * Downlink to change configure
57 +* IP66 Waterproof Enclosure
55 55  * 8500mAh Battery for long term use
56 56  
60 +
61 +
57 57  == 1.3 Specification ==
58 58  
59 59  
... ... @@ -62,23 +62,6 @@
62 62  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**Probe Specification:**
66 -
67 -* Storage temperature:-20℃~~75℃
68 -* Operating temperature : -20℃~~60℃
69 -* Measure Distance:
70 -** 0.1m ~~ 12m @ 90% Reflectivity
71 -** 0.1m ~~ 4m @ 10% Reflectivity
72 -* Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution : 5mm
74 -* Ambient light immunity : 70klux
75 -* Enclosure rating : IP65
76 -* Light source : LED
77 -* Central wavelength : 850nm
78 -* FOV : 3.6°
79 -* Material of enclosure : ABS+PC
80 -* Wire length : 25cm
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
84 84  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -99,28 +99,140 @@
99 99  * Sleep Mode: 5uA @ 3.3v
100 100  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101 101  
102 -== 1.4 Applications ==
90 +== 1.4 Suitable Container & Liquid ==
103 103  
104 104  
105 -* Horizontal distance measurement
106 -* Parking management system
107 -* Object proximity and presence detection
108 -* Intelligent trash can management system
109 -* Robot obstacle avoidance
110 -* Automatic control
111 -* Sewer
93 +* Solid Wall container such as: steel, iron, glass, ceramics, non-foaming plastics etc.
94 +* Container shape is regular, and surface is smooth.
95 +* Container Thickness:
96 +** Pure metal material.  2~~8mm, best is 3~~5mm
97 +** Pure non metal material: <10 mm
98 +* Pure liquid without irregular deposition.
112 112  
100 +
113 113  (% style="display:none" %)
114 114  
115 -== 1.5 Sleep mode and working mode ==
103 +== 1.5 Install DDS20-LB ==
116 116  
117 117  
106 +(% style="color:blue" %)**Step 1**(%%):  Choose the installation point.
107 +
108 +DDS20-LB (% style="color:red" %)**MUST**(%%) be installed on the container bottom middle position.
109 +
110 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-3.png?rev=1.1||alt="image-20220615091045-3.png"]]
111 +
112 +
113 +(((
114 +(% style="color:blue" %)**Step 2**(%%):  Polish the installation point.
115 +)))
116 +
117 +(((
118 +For Metal Surface with paint, it is important to polish the surface, first use crude sand paper to polish the paint level , then use exquisite sand paper to polish the metal level to make it shine & smooth.
119 +)))
120 +
121 +[[image:image-20230613143052-5.png]]
122 +
123 +
124 +No polish needed if the container is shine metal surface without paint or non-metal container.
125 +
126 +[[image:image-20230613143125-6.png]]
127 +
128 +
129 +(((
130 +(% style="color:blue" %)**Step3:   **(%%)Test the installation point.
131 +)))
132 +
133 +(((
134 +Power on DDS20-LB, check if the blue LED is on, If the blue LED is on, means the sensor works. Then put ultrasonic coupling paste on the sensor and put it tightly on the installation point.
135 +)))
136 +
137 +(((
138 +It is necessary to put the coupling paste between the sensor and the container, otherwise DDS20-LB won't detect the liquid level.
139 +)))
140 +
141 +(((
142 +After paste the DDS20-LB well, power on DDS20-LB. In the first 30 seconds of booting, device will check the sensors status and BLUE LED will show the status as below. After 30 seconds, BLUE LED will be off to save battery life.
143 +)))
144 +
145 +
146 +(((
147 +(% style="color:red" %)**LED Status:**
148 +)))
149 +
150 +* (((
151 +Onboard LED: When power on device, the onboard LED will fast blink 4 times which means detect the sensor well.
152 +)))
153 +
154 +* (((
155 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** always ON**(%%): Sensor is power on but doesn't detect liquid. There is problem in installation point.
156 +)))
157 +* (((
158 +(% style="color:blue" %)**BLUE LED**(% style="color:red" %)** slowly blinking**(%%): Sensor detects Liquid Level, The installation point is good.
159 +)))
160 +
161 +(((
162 +LDDS20 will enter into low power mode at 30 seconds after system reset or power on, Blue LED will be off after that.
163 +)))
164 +
165 +
166 +(((
167 +(% style="color:red" %)**Note :(%%) (% style="color:blue" %)Ultrasonic coupling paste** (%%) is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
168 +)))
169 +
170 +
171 +(((
172 +(% style="color:blue" %)**Step4:   **(%%)Install use Epoxy ab glue.
173 +)))
174 +
175 +(((
176 +Prepare Eproxy AB glue.
177 +)))
178 +
179 +(((
180 +Put Eproxy AB glue in the sensor and press it hard on the container installation point.
181 +)))
182 +
183 +(((
184 +Reset DDS20-LB and see if the BLUE LED is slowly blinking.
185 +)))
186 +
187 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-8.png?width=341&height=203&rev=1.1||alt="image-20220615091045-8.png"]] [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615091045-9.png?width=284&height=200&rev=1.1||alt="image-20220615091045-9.png"]]
188 +
189 +
190 +(((
191 +(% style="color:red" %)**Note 1:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** needs 3~~ 5 minutes to stable attached. we can use other glue material to keep it in the position.
192 +)))
193 +
194 +(((
195 +(% style="color:red" %)**Note 2:**(%%)** (% style="color:blue" %)Eproxy AB glue(%%)** is subjected in most shipping way. So the default package doesn't include it and user needs to purchase locally.
196 +)))
197 +
198 +
199 +== 1.6 Applications ==
200 +
201 +
202 +* Smart liquid control solution.
203 +
204 +* Smart liquefied gas solution.
205 +
206 +== 1.7 Precautions ==
207 +
208 +
209 +* At room temperature, containers of different materials, such as steel, glass, iron, ceramics, non-foamed plastics and other dense materials, have different detection blind areas and detection limit heights.
210 +
211 +* For containers of the same material at room temperature, the detection blind zone and detection limit height are also different for the thickness of the container.
212 +
213 +* When the detected liquid level exceeds the effective detection value of the sensor, and the liquid level of the liquid to be measured shakes or tilts, the detected liquid height is unstable.(% style="display:none" %)
214 +
215 +== 1.8 Sleep mode and working mode ==
216 +
217 +
118 118  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119 119  
120 120  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121 121  
122 122  
123 -== 1.6 Button & LEDs ==
223 +== 1.9 Button & LEDs ==
124 124  
125 125  
126 126  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
... ... @@ -127,7 +127,7 @@
127 127  
128 128  
129 129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
230 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 131  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 132  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 133  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -139,10 +139,10 @@
139 139  )))
140 140  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141 141  
142 -== 1.7 BLE connection ==
242 +== 1.10 BLE connection ==
143 143  
144 144  
145 -LDS12-LB support BLE remote configure.
245 +DDS20-LB support BLE remote configure.
146 146  
147 147  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148 148  
... ... @@ -153,12 +153,12 @@
153 153  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154 154  
155 155  
156 -== 1.8 Pin Definitions ==
256 +== 1.11 Pin Definitions ==
157 157  
258 +[[image:image-20230523174230-1.png]]
158 158  
159 -[[image:image-20230805144259-1.png||height="413" width="741"]]
160 160  
161 -== 1.9 Mechanical ==
261 +== 1.12 Mechanical ==
162 162  
163 163  
164 164  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
... ... @@ -172,16 +172,18 @@
172 172  
173 173  (% style="color:blue" %)**Probe Mechanical:**
174 174  
275 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-1.png?rev=1.1||alt="image-20220615090910-1.png"]]
175 175  
176 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177 177  
278 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/image-20220615090910-2.png?rev=1.1||alt="image-20220615090910-2.png"]]
178 178  
179 -= 2. Configure LDS12-LB to connect to LoRaWAN network =
180 180  
281 += 2. Configure DDS20-LB to connect to LoRaWAN network =
282 +
181 181  == 2.1 How it works ==
182 182  
183 183  
184 -The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
286 +The DDS20-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the DDS20-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185 185  
186 186  (% style="display:none" %) (%%)
187 187  
... ... @@ -192,12 +192,12 @@
192 192  
193 193  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194 194  
195 -[[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
297 +[[image:image-20230613140140-4.png||height="453" width="800"]](% style="display:none" %)
196 196  
197 197  
198 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
300 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DDS20-LB.
199 199  
200 -Each LDS12-LB is shipped with a sticker with the default device EUI as below:
302 +Each DDS20-LB is shipped with a sticker with the default device EUI as below:
201 201  
202 202  [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203 203  
... ... @@ -226,10 +226,10 @@
226 226  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227 227  
228 228  
229 -(% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
331 +(% style="color:blue" %)**Step 2:**(%%) Activate on DDS20-LB
230 230  
231 231  
232 -Press the button for 5 seconds to activate the LDS12-LB.
334 +Press the button for 5 seconds to activate the DDS20-LB.
233 233  
234 234  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235 235  
... ... @@ -236,118 +236,75 @@
236 236  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237 237  
238 238  
239 -== 2.3 ​Uplink Payload ==
341 +== 2.3  ​Uplink Payload ==
240 240  
241 -=== 2.3.1 Device Status, FPORT~=5 ===
242 242  
344 +(((
345 +DDS20-LB will uplink payload via LoRaWAN with below payload format: 
346 +)))
243 243  
244 -Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
348 +(((
349 +Uplink payload includes in total 8 bytes.
350 +)))
245 245  
246 -The Payload format is as below.
247 -
248 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
352 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
353 +|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
250 250  **Size(bytes)**
251 -)))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 -|(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
355 +)))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#D9E2F3;color:#0070C0" %)1|=(% style="background-color:#D9E2F3;color:#0070C0" %)2|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
356 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
357 +[[Distance>>||anchor="H2.3.2A0Distance"]]
358 +(unit: mm)
359 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
360 +[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
361 +)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
253 253  
254 -Example parse in TTNv3
363 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS20%20-%20LoRaWAN%20Liquid%20Level%20Sensor%20User%20Manual/WebHome/1654850511545-399.png?rev=1.1||alt="1654850511545-399.png"]]
255 255  
256 -[[image:image-20230805103904-1.png||height="131" width="711"]]
257 257  
258 -(% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
366 +=== 2.3.1  Battery Info ===
259 259  
260 -(% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261 261  
262 -(% style="color:blue" %)**Frequency Band**:
369 +Check the battery voltage for DDS20-LB.
263 263  
264 -0x01: EU868
265 -
266 -0x02: US915
267 -
268 -0x03: IN865
269 -
270 -0x04: AU915
271 -
272 -0x05: KZ865
273 -
274 -0x06: RU864
275 -
276 -0x07: AS923
277 -
278 -0x08: AS923-1
279 -
280 -0x09: AS923-2
281 -
282 -0x0a: AS923-3
283 -
284 -0x0b: CN470
285 -
286 -0x0c: EU433
287 -
288 -0x0d: KR920
289 -
290 -0x0e: MA869
291 -
292 -(% style="color:blue" %)**Sub-Band**:
293 -
294 -AU915 and US915:value 0x00 ~~ 0x08
295 -
296 -CN470: value 0x0B ~~ 0x0C
297 -
298 -Other Bands: Always 0x00
299 -
300 -(% style="color:blue" %)**Battery Info**:
301 -
302 -Check the battery voltage.
303 -
304 304  Ex1: 0x0B45 = 2885mV
305 305  
306 306  Ex2: 0x0B49 = 2889mV
307 307  
308 308  
309 -=== 2.3.2 Uplink Payload, FPORT~=2 ===
376 +=== 2.3.2  Distance ===
310 310  
311 311  
312 312  (((
313 -LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
380 +Get the distance. Flat object range 20mm - 2000mm.
381 +)))
314 314  
315 -periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]].
383 +(((
384 +For example, if the data you get from the register is **0x06 0x05**, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** **
316 316  
317 -Uplink Payload totals 11 bytes.
386 +(% style="color:blue" %)**0605(H) = 1541 (D) = 1541 mm.**
318 318  )))
319 319  
320 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
322 -**Size(bytes)**
323 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
324 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 -[[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 -)))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
327 -[[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
328 -)))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 -[[Message Type>>||anchor="HMessageType"]]
330 -)))
389 +* If the sensor value is 0x0000, it means system doesn't detect ultrasonic sensor.
331 331  
332 -[[image:image-20230805104104-2.png||height="136" width="754"]]
391 +* If the sensor value lower than 0x0014 (20mm), the sensor value will be invalid.
333 333  
393 +=== 2.3.3  Interrupt Pin ===
334 334  
335 -==== (% style="color:blue" %)**Battery Info**(%%) ====
336 336  
396 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
337 337  
338 -Check the battery voltage for LDS12-LB.
398 +**Example:**
339 339  
340 -Ex1: 0x0B45 = 2885mV
400 +0x00: Normal uplink packet.
341 341  
342 -Ex2: 0x0B49 = 2889mV
402 +0x01: Interrupt Uplink Packet.
343 343  
344 344  
345 -==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
405 +=== 2.3.4  DS18B20 Temperature sensor ===
346 346  
347 347  
348 348  This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
349 349  
350 -
351 351  **Example**:
352 352  
353 353  If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -355,190 +355,42 @@
355 355  If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
356 356  
357 357  
358 -==== (% style="color:blue" %)**Distance**(%%) ====
417 +=== 2.3.5  Sensor Flag ===
359 359  
360 360  
361 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362 -
363 -
364 -**Example**:
365 -
366 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
367 -
368 -
369 -==== (% style="color:blue" %)**Distance signal strength**(%%) ====
370 -
371 -
372 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
373 -
374 -
375 -**Example**:
376 -
377 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
378 -
379 -Customers can judge whether they need to adjust the environment based on the signal strength.
380 -
381 -
382 -**1) When the sensor detects valid data:**
383 -
384 -[[image:image-20230805155335-1.png||height="145" width="724"]]
385 -
386 -
387 -**2) When the sensor detects invalid data:**
388 -
389 -[[image:image-20230805155428-2.png||height="139" width="726"]]
390 -
391 -
392 -**3) When the sensor is not connected:**
393 -
394 -[[image:image-20230805155515-3.png||height="143" width="725"]]
395 -
396 -
397 -==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
398 -
399 -
400 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
401 -
402 -Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]].
403 -
404 -**Example:**
405 -
406 -0x00: Normal uplink packet.
407 -
408 -0x01: Interrupt Uplink Packet.
409 -
410 -
411 -==== (% style="color:blue" %)**LiDAR temp**(%%) ====
412 -
413 -
414 -Characterize the internal temperature value of the sensor.
415 -
416 -**Example: **
417 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
418 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
419 -
420 -
421 -==== (% style="color:blue" %)**Message Type**(%%) ====
422 -
423 -
424 424  (((
425 -For a normal uplink payload, the message type is always 0x01.
421 +0x01: Detect Ultrasonic Sensor
426 426  )))
427 427  
428 428  (((
429 -Valid Message Type:
425 +0x00: No Ultrasonic Sensor
430 430  )))
431 431  
432 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
433 -|=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
434 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
435 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
436 436  
437 -[[image:image-20230805150315-4.png||height="233" width="723"]]
429 +=== 2.3.6  Decode payload in The Things Network ===
438 438  
439 439  
440 -=== 2.3.3 Historical measuring distance, FPORT~=3 ===
432 +While using TTN network, you can add the payload format to decode the payload.
441 441  
442 -LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.5.4Pollsensorvalue]].
434 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654850829385-439.png?rev=1.1||alt="1654850829385-439.png"]]
443 443  
444 -The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
436 +The payload decoder function for TTN V3 is here:
445 445  
446 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
448 -**Size(bytes)**
449 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
450 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
451 -Reserve(0xFF)
452 -)))|Distance|Distance signal strength|(% style="width:88px" %)(((
453 -LiDAR temp
454 -)))|(% style="width:85px" %)Unix TimeStamp
455 -
456 -**Interrupt flag & Interrupt level:**
457 -
458 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
459 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
460 -**Size(bit)**
461 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
462 -|(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
463 -Interrupt flag
438 +(((
439 +DDS20-LB TTN V3 Payload Decoder:  [[ttps:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
464 464  )))
465 465  
466 -* (((
467 -Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
468 -)))
469 469  
470 -For example, in the US915 band, the max payload for different DR is:
443 +== 2.4  Uplink Interval ==
471 471  
472 -**a) DR0:** max is 11 bytes so one entry of data
473 473  
474 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
446 +The DDS20-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
475 475  
476 -**c) DR2:** total payload includes 11 entries of data
477 477  
478 -**d) DR3:** total payload includes 22 entries of data.
449 +== 2.5  ​Show Data in DataCake IoT Server ==
479 479  
480 -If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
481 481  
482 -
483 -**Downlink:**
484 -
485 -0x31 64 CC 68 0C 64 CC 69 74 05
486 -
487 -[[image:image-20230805144936-2.png||height="113" width="746"]]
488 -
489 -**Uplink:**
490 -
491 -43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
492 -
493 -
494 -**Parsed Value:**
495 -
496 -[DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
497 -
498 -
499 -[360,176,30,High,True,2023-08-04 02:53:00],
500 -
501 -[355,168,30,Low,False,2023-08-04 02:53:29],
502 -
503 -[245,211,30,Low,False,2023-08-04 02:54:29],
504 -
505 -[57,700,30,Low,False,2023-08-04 02:55:29],
506 -
507 -[361,164,30,Low,True,2023-08-04 02:56:00],
508 -
509 -[337,184,30,Low,False,2023-08-04 02:56:40],
510 -
511 -[20,4458,30,Low,False,2023-08-04 02:57:40],
512 -
513 -[362,173,30,Low,False,2023-08-04 02:58:53],
514 -
515 -
516 -History read from serial port:
517 -
518 -[[image:image-20230805145056-3.png]]
519 -
520 -
521 -=== 2.3.4 Decode payload in The Things Network ===
522 -
523 -
524 -While using TTN network, you can add the payload format to decode the payload.
525 -
526 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
527 -
528 -
529 529  (((
530 -The payload decoder function for TTN is here:
531 -)))
532 -
533 -(((
534 -LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
535 -)))
536 -
537 -
538 -== 2.4 ​Show Data in DataCake IoT Server ==
539 -
540 -
541 -(((
542 542  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
543 543  )))
544 544  
... ... @@ -560,7 +560,7 @@
560 560  
561 561  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
562 562  
563 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
474 +(% style="color:blue" %)**Step 4**(%%)**: Search the DDS20-LB and add DevEUI.**
564 564  
565 565  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
566 566  
... ... @@ -570,22 +570,23 @@
570 570  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
571 571  
572 572  
573 -== 2.5 Datalog Feature ==
574 574  
485 +== 2.6 Datalog Feature ==
575 575  
576 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
577 577  
488 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DDS20-LB will store the reading for future retrieving purposes.
578 578  
579 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
580 580  
491 +=== 2.6.1 Ways to get datalog via LoRaWAN ===
581 581  
582 -Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
583 583  
494 +Set PNACKMD=1, DDS20-LB will wait for ACK for every uplink, when there is no LoRaWAN network,DDS20-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
495 +
584 584  * (((
585 -a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
497 +a) DDS20-LB will do an ACK check for data records sending to make sure every data arrive server.
586 586  )))
587 587  * (((
588 -b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
500 +b) DDS20-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but DDS20-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DDS20-LB gets a ACK, DDS20-LB will consider there is a network connection and resend all NONE-ACK messages.
589 589  )))
590 590  
591 591  Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
... ... @@ -593,10 +593,10 @@
593 593  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
594 594  
595 595  
596 -=== 2.5.2 Unix TimeStamp ===
508 +=== 2.6.2 Unix TimeStamp ===
597 597  
598 598  
599 -LDS12-LB uses Unix TimeStamp format based on
511 +DDS20-LB uses Unix TimeStamp format based on
600 600  
601 601  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
602 602  
... ... @@ -610,23 +610,23 @@
610 610  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
611 611  
612 612  
613 -=== 2.5.3 Set Device Time ===
525 +=== 2.6.3 Set Device Time ===
614 614  
615 615  
616 616  User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
617 617  
618 -Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
530 +Once DDS20-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to DDS20-LB. If DDS20-LB fails to get the time from the server, DDS20-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
619 619  
620 620  (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
621 621  
622 622  
623 -=== 2.5.4 Poll sensor value ===
535 +=== 2.6.4 Poll sensor value ===
624 624  
625 625  
626 626  Users can poll sensor values based on timestamps. Below is the downlink command.
627 627  
628 628  (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
629 -|(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
541 +|(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
630 630  |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
631 631  |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
632 632  
... ... @@ -643,108 +643,24 @@
643 643  )))
644 644  
645 645  (((
646 -Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
558 +Uplink Internal =5s,means DDS20-LB will send one packet every 5s. range 5~~255s.
647 647  )))
648 648  
649 649  
650 -== 2.6 Frequency Plans ==
562 +== 2.7 Frequency Plans ==
651 651  
652 652  
653 -The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
565 +The DDS20-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
654 654  
655 655  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
656 656  
657 657  
658 -== 2.7 LiDAR ToF Measurement ==
570 += 3. Configure DDS20-LB =
659 659  
660 -=== 2.7.1 Principle of Distance Measurement ===
661 -
662 -
663 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
664 -
665 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
666 -
667 -
668 -=== 2.7.2 Distance Measurement Characteristics ===
669 -
670 -
671 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
672 -
673 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
674 -
675 -
676 -(((
677 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
678 -)))
679 -
680 -(((
681 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
682 -)))
683 -
684 -(((
685 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
686 -)))
687 -
688 -
689 -(((
690 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
691 -)))
692 -
693 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
694 -
695 -(((
696 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
697 -)))
698 -
699 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
700 -
701 -(((
702 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
703 -)))
704 -
705 -
706 -=== 2.7.3 Notice of usage ===
707 -
708 -
709 -Possible invalid /wrong reading for LiDAR ToF tech:
710 -
711 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
712 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
713 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
714 -* The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
715 -
716 -=== 2.7.4  Reflectivity of different objects ===
717 -
718 -
719 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
720 -|=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
721 -|(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
722 -|(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
723 -|(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
724 -|(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
725 -|(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
726 -|(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
727 -|(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
728 -|(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
729 -|(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
730 -|(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
731 -|(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
732 -|(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
733 -|(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
734 -|(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
735 -|(% style="width:53px" %)15|(% style="width:229px" %)(((
736 -Unpolished white metal surface
737 -)))|(% style="width:93px" %)130%
738 -|(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
739 -|(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
740 -|(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
741 -
742 -= 3. Configure LDS12-LB =
743 -
744 744  == 3.1 Configure Methods ==
745 745  
746 746  
747 -LDS12-LB supports below configure method:
575 +DDS20-LB supports below configure method:
748 748  
749 749  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
750 750  
... ... @@ -766,10 +766,10 @@
766 766  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
767 767  
768 768  
769 -== 3.3 Commands special design for LDS12-LB ==
597 +== 3.3 Commands special design for DDS20-LB ==
770 770  
771 771  
772 -These commands only valid for LDS12-LB, as below:
600 +These commands only valid for DDS20-LB, as below:
773 773  
774 774  
775 775  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -784,7 +784,7 @@
784 784  )))
785 785  
786 786  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
787 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
615 +|=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
788 788  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
789 789  30000
790 790  OK
... ... @@ -812,9 +812,6 @@
812 812  )))
813 813  * (((
814 814  Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
815 -
816 -
817 -
818 818  )))
819 819  
820 820  === 3.3.2 Set Interrupt Mode ===
... ... @@ -827,7 +827,7 @@
827 827  (% style="color:blue" %)**AT Command: AT+INTMOD**
828 828  
829 829  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
830 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
655 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
831 831  |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
832 832  0
833 833  OK
... ... @@ -851,39 +851,10 @@
851 851  
852 852  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
853 853  
854 -=== 3.3.3  Set Power Output Duration ===
855 -
856 -Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
857 -
858 -~1. first enable the power output to external sensor,
859 -
860 -2. keep it on as per duration, read sensor value and construct uplink payload
861 -
862 -3. final, close the power output.
863 -
864 -(% style="color:blue" %)**AT Command: AT+3V3T**
865 -
866 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
867 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
868 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
869 -OK
870 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
871 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
872 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
873 -
874 -(% style="color:blue" %)**Downlink Command: 0x07**(%%)
875 -Format: Command Code (0x07) followed by 3 bytes.
876 -
877 -The first byte is 01,the second and third bytes are the time to turn on.
878 -
879 -* Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
880 -* Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
881 -* Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
882 -
883 883  = 4. Battery & Power Consumption =
884 884  
885 885  
886 -LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
682 +DDS20-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
887 887  
888 888  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
889 889  
... ... @@ -892,7 +892,7 @@
892 892  
893 893  
894 894  (% class="wikigeneratedid" %)
895 -User can change firmware LDS12-LB to:
691 +User can change firmware DDS20-LB to:
896 896  
897 897  * Change Frequency band/ region.
898 898  
... ... @@ -900,7 +900,7 @@
900 900  
901 901  * Fix bugs.
902 902  
903 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
699 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
904 904  
905 905  Methods to Update Firmware:
906 906  
... ... @@ -908,40 +908,42 @@
908 908  
909 909  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
910 910  
707 +
911 911  = 6. FAQ =
912 912  
913 -== 6.1 What is the frequency plan for LDS12-LB? ==
710 +== 6.1  What is the frequency plan for DDS20-LB? ==
914 914  
915 915  
916 -LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
713 +DDS20-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
917 917  
918 918  
919 -= 7Trouble Shooting =
716 +== 6.2  Can I use DDS20-LB in condensation environment? ==
920 920  
921 -== 7.1 AT Command input doesn't work ==
922 922  
719 +DDS20-LB is not suitable to be used in condensation environment. Condensation on the DDS20-LB probe will affect the reading and always got 0.
923 923  
924 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
925 925  
722 += 7.  Trouble Shooting =
926 926  
927 -== 7.2 Significant error between the output distant value of LiDAR and actual distance ==
724 +== 7.1  Why I can't join TTN V3 in US915 / AU915 bands? ==
928 928  
929 929  
930 -(((
931 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
932 -)))
727 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
933 933  
934 -(((
935 -(% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
936 -)))
937 937  
730 +== 7.2  AT Command input doesn't work ==
938 938  
939 -(((
940 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
941 -)))
942 942  
733 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
734 +
735 +
736 +== 7.3  Why i always see 0x0000 or 0 for the distance value? ==
737 +
738 +
943 943  (((
944 -(% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
740 +LDDS20 has a strict [[**installation requirement**>>||anchor="H1.5A0InstallDDS20-LB"]]. Please make sure the installation method exactly follows up with the installation requirement. Otherwise, the reading might be always 0x00.
741 +
742 +If you have followed the instruction requirement exactly but still see the 0x00 reading issue, please. please double-check the decoder, you can check the raw payload to verify.
945 945  )))
946 946  
947 947  
... ... @@ -948,7 +948,7 @@
948 948  = 8. Order Info =
949 949  
950 950  
951 -Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
749 +Part Number: (% style="color:blue" %)**DDS20-LB-XXX**
952 952  
953 953  (% style="color:red" %)**XXX**(%%): **The default frequency band**
954 954  
... ... @@ -973,7 +973,7 @@
973 973  
974 974  (% style="color:#037691" %)**Package Includes**:
975 975  
976 -* LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
774 +* DDS20-LB LoRaWAN Ultrasonic Liquid Level Sensor x 1
977 977  
978 978  (% style="color:#037691" %)**Dimension and weight**:
979 979  
image-20230614153353-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.1 KB
Content
image-20230614162334-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230614162359-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
image-20230615152941-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230615153004-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.9 KB
Content
image-20230805103904-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.9 KB
Content
image-20230805104104-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -46.3 KB
Content
image-20230805144259-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -872.7 KB
Content
image-20230805144936-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.5 KB
Content
image-20230805145056-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -30.7 KB
Content
image-20230805150315-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -90.6 KB
Content
image-20230805155335-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.4 KB
Content
image-20230805155428-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.5 KB
Content
image-20230805155515-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -45.7 KB
Content