Version 93.1 by Saxer Lin on 2023/08/05 10:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Common DC Characteristics:**
62
63 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 * Operating Temperature: -40 ~~ 85°C
65
66 (% style="color:#037691" %)**Probe Specification:**
67
68 * Storage temperature:-20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
73 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 * Distance resolution : 5mm
75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Battery:**
91
92 * Li/SOCI2 un-chargeable battery
93 * Capacity: 8500mAh
94 * Self-Discharge: <1% / Year @ 25°C
95 * Max continuously current: 130mA
96 * Max boost current: 2A, 1 second
97
98 (% style="color:#037691" %)**Power Consumption**
99
100 * Sleep Mode: 5uA @ 3.3v
101 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102
103
104 == 1.4 Applications ==
105
106
107 * Horizontal distance measurement
108 * Parking management system
109 * Object proximity and presence detection
110 * Intelligent trash can management system
111 * Robot obstacle avoidance
112 * Automatic control
113 * Sewer
114
115
116 (% style="display:none" %)
117
118 == 1.5 Sleep mode and working mode ==
119
120
121 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122
123 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124
125
126 == 1.6 Button & LEDs ==
127
128
129 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130
131
132 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 )))
138 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 )))
143 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144
145
146 == 1.7 BLE connection ==
147
148
149 LDS12-LB support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.8 Pin Definitions ==
161
162 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163
164
165 == 1.9 Mechanical ==
166
167
168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
169
170
171 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
172
173
174 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175
176
177 (% style="color:blue" %)**Probe Mechanical:**
178
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181
182
183 = 2. Configure LDS12-LB to connect to LoRaWAN network =
184
185 == 2.1 How it works ==
186
187
188 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189
190 (% style="display:none" %) (%%)
191
192 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
203
204 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205
206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207
208
209 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210
211
212 (% style="color:blue" %)**Register the device**
213
214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
215
216
217 (% style="color:blue" %)**Add APP EUI and DEV EUI**
218
219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
220
221
222 (% style="color:blue" %)**Add APP EUI in the application**
223
224
225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
226
227
228 (% style="color:blue" %)**Add APP KEY**
229
230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231
232
233 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
234
235
236 Press the button for 5 seconds to activate the LDS12-LB.
237
238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239
240 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241
242
243 == 2.3 ​Uplink Payload ==
244
245 === 2.3.1 Device Status, FPORT~=5 ===
246
247
248 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249
250 The Payload format is as below.
251
252 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 **Size(bytes)**
255 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257
258 Example parse in TTNv3
259
260 [[image:image-20230805103904-1.png||height="131" width="711"]]
261
262 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263
264 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265
266 (% style="color:blue" %)**Frequency Band**:
267
268 0x01: EU868
269
270 0x02: US915
271
272 0x03: IN865
273
274 0x04: AU915
275
276 0x05: KZ865
277
278 0x06: RU864
279
280 0x07: AS923
281
282 0x08: AS923-1
283
284 0x09: AS923-2
285
286 0x0a: AS923-3
287
288 0x0b: CN470
289
290 0x0c: EU433
291
292 0x0d: KR920
293
294 0x0e: MA869
295
296 (% style="color:blue" %)**Sub-Band**:
297
298 AU915 and US915:value 0x00 ~~ 0x08
299
300 CN470: value 0x0B ~~ 0x0C
301
302 Other Bands: Always 0x00
303
304 (% style="color:blue" %)**Battery Info**:
305
306 Check the battery voltage.
307
308 Ex1: 0x0B45 = 2885mV
309
310 Ex2: 0x0B49 = 2889mV
311
312
313 === 2.3.2 Uplink Payload, FPORT~=2 ===
314
315
316 (((
317 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
318
319 periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]].
320
321 Uplink Payload totals 11 bytes.
322 )))
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 [[Message Type>>||anchor="HMessageType"]]
334 )))
335
336 [[image:image-20230805104104-2.png||height="136" width="754"]]
337
338
339 ==== (% style="color:blue" %)**Battery Info**(%%) ====
340
341
342 Check the battery voltage for LDS12-LB.
343
344 Ex1: 0x0B45 = 2885mV
345
346 Ex2: 0x0B49 = 2889mV
347
348
349 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350
351
352 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353
354
355 **Example**:
356
357 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
358
359 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360
361
362 ==== (% style="color:blue" %)**Distance**(%%) ====
363
364
365 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366
367
368 **Example**:
369
370 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371
372
373 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374
375
376 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377
378
379 **Example**:
380
381 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382
383 Customers can judge whether they need to adjust the environment based on the signal strength.
384
385
386 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
387
388
389 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
390
391 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
392
393 **Example:**
394
395 0x00: Normal uplink packet.
396
397 0x01: Interrupt Uplink Packet.
398
399
400 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
401
402
403 Characterize the internal temperature value of the sensor.
404
405 **Example: **
406 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
408
409
410 ==== (% style="color:blue" %)**Message Type**(%%) ====
411
412
413 (((
414 For a normal uplink payload, the message type is always 0x01.
415 )))
416
417 (((
418 Valid Message Type:
419 )))
420
421 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
425
426
427 === 2.3.3 Decode payload in The Things Network ===
428
429
430 While using TTN network, you can add the payload format to decode the payload.
431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
433
434
435 (((
436 The payload decoder function for TTN is here:
437 )))
438
439 (((
440 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
441 )))
442
443
444 == 2.4 ​Show Data in DataCake IoT Server ==
445
446
447 (((
448 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
449 )))
450
451
452 (((
453 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
454 )))
455
456 (((
457 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
458 )))
459
460
461 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
462
463
464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
465
466
467 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
468
469 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
470
471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
472
473
474 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
475
476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
477
478
479 == 2.5 Datalog Feature ==
480
481
482 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
483
484
485 === 2.5.1 Ways to get datalog via LoRaWAN ===
486
487
488 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
489
490 * (((
491 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
492 )))
493 * (((
494 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
495 )))
496
497 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
498
499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
500
501
502 === 2.5.2 Unix TimeStamp ===
503
504
505 LDS12-LB uses Unix TimeStamp format based on
506
507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
508
509 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
510
511 Below is the converter example
512
513 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
514
515
516 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517
518
519 === 2.5.3 Set Device Time ===
520
521
522 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523
524 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
525
526 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527
528
529 === 2.5.4 Poll sensor value ===
530
531
532 Users can poll sensor values based on timestamps. Below is the downlink command.
533
534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
535 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
536 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538
539 (((
540 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
541 )))
542
543 (((
544 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
545 )))
546
547 (((
548 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
549 )))
550
551 (((
552 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
553 )))
554
555
556 == 2.6 Frequency Plans ==
557
558
559 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
560
561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562
563
564 == 2.7 LiDAR ToF Measurement ==
565
566 === 2.7.1 Principle of Distance Measurement ===
567
568
569 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570
571 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572
573
574 === 2.7.2 Distance Measurement Characteristics ===
575
576
577 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578
579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
580
581
582 (((
583 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 )))
585
586 (((
587 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 )))
589
590 (((
591 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 )))
593
594
595 (((
596 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 )))
598
599 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
600
601 (((
602 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 )))
604
605 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
606
607 (((
608 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 )))
610
611
612 === 2.7.3 Notice of usage ===
613
614
615 Possible invalid /wrong reading for LiDAR ToF tech:
616
617 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621
622
623 === 2.7.4  Reflectivity of different objects ===
624
625
626 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 |(% style="width:53px" %)15|(% style="width:229px" %)(((
643 Unpolished white metal surface
644 )))|(% style="width:93px" %)130%
645 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
648
649
650 = 3. Configure LDS12-LB =
651
652 == 3.1 Configure Methods ==
653
654
655 LDS12-LB supports below configure method:
656
657 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
658
659 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
660
661 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
662
663
664 == 3.2 General Commands ==
665
666
667 These commands are to configure:
668
669 * General system settings like: uplink interval.
670
671 * LoRaWAN protocol & radio related command.
672
673 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
674
675 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
676
677
678 == 3.3 Commands special design for LDS12-LB ==
679
680
681 These commands only valid for LDS12-LB, as below:
682
683
684 === 3.3.1 Set Transmit Interval Time ===
685
686
687 (((
688 Feature: Change LoRaWAN End Node Transmit Interval.
689 )))
690
691 (((
692 (% style="color:blue" %)**AT Command: AT+TDC**
693 )))
694
695 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
696 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
697 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
698 30000
699 OK
700 the interval is 30000ms = 30s
701 )))
702 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
703 OK
704 Set transmit interval to 60000ms = 60 seconds
705 )))
706
707 (((
708 (% style="color:blue" %)**Downlink Command: 0x01**
709 )))
710
711 (((
712 Format: Command Code (0x01) followed by 3 bytes time value.
713 )))
714
715 (((
716 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
717 )))
718
719 * (((
720 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
721 )))
722 * (((
723 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
724
725
726
727 )))
728
729 === 3.3.2 Set Interrupt Mode ===
730
731
732 Feature, Set Interrupt mode for PA8 of pin.
733
734 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
735
736 (% style="color:blue" %)**AT Command: AT+INTMOD**
737
738 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
739 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
740 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
741 0
742 OK
743 the mode is 0 =Disable Interrupt
744 )))
745 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
746 Set Transmit Interval
747 0. (Disable Interrupt),
748 ~1. (Trigger by rising and falling edge)
749 2. (Trigger by falling edge)
750 3. (Trigger by rising edge)
751 )))|(% style="width:157px" %)OK
752
753 (% style="color:blue" %)**Downlink Command: 0x06**
754
755 Format: Command Code (0x06) followed by 3 bytes.
756
757 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
758
759 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
760
761 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
762
763
764 === 3.3.3  Set Power Output Duration ===
765
766 Control the output duration 3V3 . Before each sampling, device will
767
768 ~1. first enable the power output to external sensor,
769
770 2. keep it on as per duration, read sensor value and construct uplink payload
771
772 3. final, close the power output.
773
774 (% style="color:blue" %)**AT Command: AT+3V3T**
775
776 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 OK
780 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
782
783 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 Format: Command Code (0x07) followed by 3 bytes.
785
786 The first byte is 01,the second and third bytes are the time to turn on.
787
788 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
790
791
792 = 4. Battery & Power Consumption =
793
794
795 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
796
797 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
798
799
800 = 5. OTA Firmware update =
801
802
803 (% class="wikigeneratedid" %)
804 User can change firmware LDS12-LB to:
805
806 * Change Frequency band/ region.
807
808 * Update with new features.
809
810 * Fix bugs.
811
812 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
813
814 Methods to Update Firmware:
815
816 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
817
818 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
819
820
821 = 6. FAQ =
822
823 == 6.1 What is the frequency plan for LDS12-LB? ==
824
825
826 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
827
828
829 = 7. Trouble Shooting =
830
831 == 7.1 AT Command input doesn't work ==
832
833
834 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
835
836
837 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
838
839
840 (((
841 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
842 )))
843
844 (((
845 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
846 )))
847
848
849 (((
850 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
851 )))
852
853 (((
854 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
855 )))
856
857
858 = 8. Order Info =
859
860
861 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
862
863 (% style="color:red" %)**XXX**(%%): **The default frequency band**
864
865 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
866
867 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
868
869 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
870
871 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
872
873 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
874
875 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
876
877 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
878
879 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
880
881
882 = 9. ​Packing Info =
883
884
885 (% style="color:#037691" %)**Package Includes**:
886
887 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
888
889 (% style="color:#037691" %)**Dimension and weight**:
890
891 * Device Size: cm
892
893 * Device Weight: g
894
895 * Package Size / pcs : cm
896
897 * Weight / pcs : g
898
899
900 = 10. Support =
901
902
903 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
904
905 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].