Wiki source code of DMT01

Version 85.3 by Mengting Qiu on 2025/08/07 17:26

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (≤15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754558742780-944.png]]|(% style="background-color:#f2f2f2; width:130px" %) |(% style="background-color:#f2f2f2; width:254px" %)
135
136
137
138 == 1.9 Power on device and Recharge Probe ==
139
140 [[image:1754558298504-183.jpg||height="509" width="509"]]
141
142 When the repeater is charging, the charging indicator light will be solid red.
143
144
145
146 = 2.  Use DMT01 =
147
148 == 2.1  How it works ==
149
150 (((
151 (((
152
153
154 DMT01 Include two parts,
155
156 1. The food grade probe : used to measure the meat temperature
157 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
158
159
160
161 Consider the BLE coverage , there is two cases:
162
163 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
164
165 Probe will establish connection to the charge via BLE.  and the data flow is as below.
166 )))
167
168 [[image:1753622303925-386.png]]
169
170
171 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
172
173 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
174
175 For example:
176
177 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
178
179 2) User can use Mobile phone to get the broadcast signal and further process.
180
181
182 == 2.2 Activate Device ==
183
184 To use DMT01 send data to LoRaWAN network, user need to:
185
186 1. Input the OTAA Keys in LoRaWAN Network Server
187 1. Make sure there is LoraWAN network
188 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
189
190
191
192 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
193 )))
194
195
196 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
197
198
199 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
200
201 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202
203 [[image:1754298519453-808.jpg||height="211" width="951"]]
204
205
206 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
207
208 Each DMT01 is shipped with a sticker with the default device EUI as below:
209
210 [[image:1754298588891-599.jpeg]](% style="display:none" %)
211
212 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
213
214 (% style="color:blue" %)**Create the application.**
215
216 [[image:1754298671647-982.png]]
217
218 [[image:1754298685721-106.png]]
219
220 (% style="color:blue" %)**Add devices to the created Application.**
221
222 [[image:1754298708270-733.png]]
223
224 [[image:1754298719336-394.png]]
225
226 (% style="color:blue" %)**Enter end device specifics manually.**
227
228 [[image:1754298737089-161.png]]
229
230 (% style="color:blue" %)**Add DevEUI and AppKey.**
231
232 (% style="color:blue" %)**Customize a platform ID for the device.**
233
234 [[image:1754298751553-229.png]]
235
236
237 (% style="color:blue" %)**Step 2: **(%%)Add decoder
238
239 In TTN, user can add a custom payload so it shows friendly reading.
240
241 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
242
243 Below is TTN screen shot:
244
245 [[image:1754298862776-783.png||height="609" width="1426"]]
246
247 [[image:1754299076396-787.png]]
248
249 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
250
251 Press the button for 3 seconds to activate the DMT01.
252
253 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
254
255 [[image:1754298481895-828.png||height="441" width="1387"]]
256
257
258
259 == 2.3 LoRaWAN Payload ==
260
261
262 === 2.3.1 Probe in-place detection, FPORT~=6 ===
263
264 There are three types of detection:
265
266 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
267 * The payload includes the** Timestamp, ProbeEvent and relay box battery level**.
268
269 The Payload format is as below:
270
271 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
272 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
273 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**4**|(% style="width:98px" %)**1**|(% style="width:103px" %)**1**
274 |(% style="width:103px" %)Value|(% style="width:91px" %)Timestamp|(% style="width:98px" %)ProbeEvent|(% style="width:103px" %)relay box battery level
275
276 Example in TTN:
277
278 [[image:1754557417277-862.png||height="322" width="1388"]]
279
280
281 (% style="color:#037691" %)**Timestamp**(%%): 0x68946BB4
282
283 (% style="color:#037691" %)**ProbeEvent**(%%):
284
285 0x03 = PROBE_FULL
286
287 0x02 = PROBE_OUT
288
289 0x01 = PROBE_IN
290
291 (% style="color:#037691" %)**relay box battery level**(%%):0x32 = 50%
292
293
294 === 2.3.1 Device Status, FPORT~=5 ===
295
296
297 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
298
299 The Payload format is as below.
300
301 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
302 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
303 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
304 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
305
306 Example in TTN:
307
308 [[image:1754299464263-797.png||height="274" width="1384"]]
309
310
311 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
312
313 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
314
315 (% style="color:#037691" %)**Frequency Band**(%%):
316
317 0x01: EU868
318
319 0x02: US915
320
321 0x03: IN865
322
323 0x04: AU915
324
325 0x05: KZ865
326
327 0x06: RU864
328
329 0x07: AS923
330
331 0x08: AS923-1
332
333 0x09: AS923-2
334
335 0x0a: AS923-3
336
337 0x0b: CN470
338
339 0x0c: EU433
340
341 0x0d: KR920
342
343 0x0e: MA869
344
345 (% style="color:#037691" %)**Sub-Band**(%%):
346
347 AU915 and US915:value 0x00 ~~ 0x08
348
349 CN470: value 0x0B ~~ 0x0C
350
351 Other Bands: Always 0x00
352
353
354 === 2.3.2  Sensor Data. FPORT~=2 ===
355
356
357 Sensor Data is uplink via FPORT=2
358
359 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
360 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
361 **Size(bytes)**
362 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
363 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
364 Timestamp
365
366
367 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
368 BoxBat
369 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
370
371 [[image:1754300947187-648.png||height="641" width="1351"]]
372
373
374
375 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
376
377 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
378
379 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
380
381
382 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
383
384 **Example**:
385
386 If payload is 0x01: BLE_LoRa
387
388 If payload is 0x02: LoRa
389
390 If payload is 0x03: BLE
391
392
393 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
394
395 **Example**:
396
397 If the payload is C12309250F1A, the MACaddr is C12309250F1A
398
399
400 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
401
402 **Example:**
403
404 If payload is 0x64 = 100%
405
406
407 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
408
409 **Example:**
410
411 If payload is 0x46 = 70%
412
413
414 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
415
416 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
417
418 **Example**:
419
420 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
421
422 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
423
424
425 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
426
427 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
428
429 **Example**:
430
431 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
432
433 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
434
435
436
437 == 2.4 Bluetoothe Broadcast Payload ==
438
439 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
440
441 Example:
442
443 Note: The following data is obtained through the **nRF Connect tool**.
444
445 [[image:1754305290140-806.jpg||height="680" width="432"]]
446
447
448 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
449
450 (% style="color:red" %)**Note: **
451
452 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
453 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
454
455 So the payload is:**01C12309250F1AD100CD006446**
456
457
458 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
459
460 Example: 0x0201060609444D5430310EFF
461
462
463 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
464
465 **Example**:
466
467 If payload is 0x01: BLE_LoRa
468
469 If payload is 0x02: LoRa
470
471 If payload is 0x03: BLE
472
473
474 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
475
476 **Example**:
477
478 If the payload is C12309250F1A, the MACaddr is C12309250F1A
479
480
481 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
482
483 **Example:**
484
485 If payload is 0x64 = 100%
486
487
488 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
489
490 **Example:**
491
492 If payload is 0x46 = 70%
493
494
495 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
496
497 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
498
499 **Example**:
500
501 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
502
503 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
504
505
506 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
507
508 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
509
510 **Example**:
511
512 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
513
514 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
515
516
517 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
518
519 Example: 0x0512E001E001
520
521
522
523 == 2.5 Datalog Feature ==
524
525
526 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
527
528
529 === 2.5.1 How datalog works ===
530
531
532 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
533
534 * (((
535 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
536 )))
537 * (((
538 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
539
540
541 )))
542
543 === 2.5.2 Enable Datalog ===
544
545 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
546
547 * (((
548 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
549 )))
550 * (((
551 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
552 )))
553
554
555
556 === 2.5.3 Unix TimeStamp ===
557
558
559 DMT01 uses Unix TimeStamp format based on
560
561 [[image:1754354802681-163.jpeg]]
562
563 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
564
565 Below is the converter example
566
567 [[image:1754354818964-624.jpeg]]
568
569
570
571 === 2.5.4 Set Device Time ===
572
573
574 You need to run downlink command 28 01 to enable time synchronization.
575
576 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
577
578 {{info}}
579 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
580 {{/info}}
581
582 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
583
584 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
585 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
586
587
588
589 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
590
591
592 The Datalog uplinks will use below payload format.
593
594 **Retrieval data payload:**
595
596 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
597 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
598 **Size(bytes)**
599 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
600 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
601 Timestamp
602
603
604 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
605 BoxBat
606 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
607 tempData
608
609 Length
610 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
611
612 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
613
614 **Poll Message Flag**: 1: This message is a poll message reply.
615
616 * Poll Message Flag is set to 1.
617
618 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
619
620 For example, in US915 band, the max payload for different DR is:
621
622 **a) DR0:** max is 11 bytes so one entry of data
623
624 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
625
626 **c) DR2:** total payload includes 11 entries of data
627
628 **d) DR3: **total payload includes 22 entries of data.
629
630 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
631
632
633 If user sends below downlink command: 316892FD706893103005
634
635 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
636
637 Stop time: 68931030 = time 25/8/6 08:20:00
638
639
640 DMT01 **will uplink this payload.**
641
642 [[image:1754468836928-459.png]]
643
644 (((
645 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
646
647 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
648 )))
649
650 (((
651 Where the first 55 bytes is for the first entry:
652 )))
653
654 (((
655 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
656 )))
657
658 (((
659 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
660
661 **DevMode** is 0x01 =  BLE_LoRa
662
663 **MACaddr **is 0xC12309250F1A = C12309250F1A
664
665 **ProbeBat **is 0x64 = 100%
666
667 **BoxBat **is 0x3c = 60%
668
669 **Message Type** is 0x40 = POLL_REPLY
670
671 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
672
673 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
674
675 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
676
677 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
678
679 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
680
681 One set of data contains 10 sets of data, and so on...
682 )))
683
684
685 = 3. Configure DMT01 =
686
687
688 DMT01 supports below configure method:
689
690 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
691
692
693
694 == 3.1 General Commands ==
695
696 These commands are to configure:
697
698 * General system settings like: uplink interval.
699 * LoRaWAN protocol & radio related command.
700
701 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
702
703 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
704
705 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
706
707
708 (((
709 == 3.2 Downlink Commands Set ==
710
711
712 These commands only valid for DMT01, as below:
713
714 === 3.2.1 Set Transmit Interval Time ===
715
716
717 (% style="color:#037691" %)**AT Command:**
718
719 There is no AT command to set TDC time.
720
721
722 **Feature**: Change LoRaWAN End Node Transmit Interval.
723
724 (% style="color:blue" %)**Downlink Command: 0x01**
725
726 Format: Command Code (0x01) followed by 3 bytes time value.
727
728 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
729
730 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
731 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
732
733
734
735 === 3.2.2 Get Device Status ===
736
737
738 Send a LoRaWAN downlink to request the device's alarm settings.
739
740
741 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
742
743 The sensor will upload device status via FPort=5. See the payload section for details.
744
745
746 === 3.2.3 Clear Flash Record ===
747
748
749 (% style="color:#037691" %)**AT Command:**
750
751 There is no AT command to Clear flash storage for the data log feature
752
753
754 **Feature**: Clear flash storage for the  data log feature.
755
756 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
757
758 * Example: 0x0801  ~/~/ Clears all saved data in flash.
759
760
761
762 === 3.2.4 Confirmed Mode ===
763
764
765 (% style="color:#037691" %)**AT Command:**
766
767 There is no AT command to control whether Confirmed Mode is enabled or disabled.
768
769
770 **Feature**: Mode for sending data that requires acknowledgment.
771
772 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
773
774 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
775 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
776
777
778
779 === 3.2.5 Set the time synchronization interval ===
780
781
782 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
783
784 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
785
786 * Example: 0x28 01  ~/~/ Synchronize once a day
787 * Example: 0x28 03  ~/~/  Synchronize once every three days
788 )))
789
790
791 === 3.2.6  Alarm Mode ===
792
793
794 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
795
796 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
797
798 Format: Command Code (0x09) followed by 4 bytes.
799
800 Example: 09 aa aa bb bb
801
802 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
803 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
804 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
805 Minimum temperature threshold
806
807 (Minimum not to exceed: -30℃)
808 )))
809 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
810 Maximum temperature threshold
811
812 (Maximum not to exceed: 120℃)
813 )))
814
815 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
816 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
817
818 Note:
819
820 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
821 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
822
823
824
825 === 3.2.7 Multi sampling ===
826
827 **Feature**: Sampling multiple times and uplink together.
828
829 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
830
831 Format: Command Code (0x0A) followed by 3 bytes.
832
833 Example: 0A aa aa bb
834
835 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
836 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
837 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
838 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
839
840 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
841
842
843 = 4. Firmware update =
844
845
846 **Firmware download link **(% class="mark" %)(To be updated...)
847
848 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
849
850 * For LoRa part: OTA firmware update via LoRa.
851
852 * For BLE and controller part.
853
854
855
856 == 4.1 Update LoRa software ==
857
858 (% class="wikigeneratedid" %)
859 User can change firmware DMT01 charger to:
860
861 * Change Frequency band/ region.
862 * Update with new features.
863 * Fix bugs.
864
865 (((
866 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
867
868 **Methods to Update Firmware:**
869
870 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
871
872
873 )))
874
875 == 4.2 Update BLE software ==
876
877 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
878
879 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
880
881 [[image:1754547742655-178.png||height="364" width="1057"]]
882
883
884 Step 2: After the phone is installed, open the installed EspbleOTA
885 [[image:1754548807155-607.gif]]
886
887 (% style="color:red" %)**Note:**
888
889 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
890
891 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
892
893
894 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
895
896 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
897
898 [[image:1754555502747-456.gif||height="659" width="297"]]
899
900
901 Step 4: Wait for the update to complete
902
903 [[image:1754555791301-172.jpg||height="618" width="277"]]
904
905
906
907
908 = 5.  FAQ =
909
910
911
912 = 6.  Order Info =
913
914
915 Part Number: (% style="color:blue" %)**DMT01-XX**
916
917 (% style="color:red" %)**XX:**
918
919 * **EU433**: Frequency bands EU433
920 * **EU868**: Frequency bands EU868
921 * **KR920**: Frequency bands KR920
922 * **CN470**: Frequency bands CN470
923 * **AS923**: Frequency bands AS923
924 * **AU915**: Frequency bands AU915
925 * **US915**: Frequency bands US915
926 * **IN865**: Frequency bands IN865
927 * **CN779**: Frequency bands CN779
928
929 = 7. ​ Packing Info =
930
931
932 (% style="color:#037691" %)**Package Includes:**
933
934 * DMT01 -  Digital Meat Thermoneter x 1
935
936 (% style="color:#037691" %)**Dimension and weight:**
937
938 * Device Size: cm
939 * Device Weight: g
940 * Package Size / pcs : cm
941 * Weight / pcs : g
942
943 = 8.  ​Support =
944
945
946 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
947 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].