Wiki source code of DMT01

Version 82.2 by Mengting Qiu on 2025/08/07 17:19

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139 [[image:1754558298504-183.jpg||height="509" width="509"]]
140
141
142
143
144 = 2.  Use DMT01 =
145
146 == 2.1  How it works ==
147
148 (((
149 (((
150
151
152 DMT01 Include two parts,
153
154 1. The food grade probe : used to measure the meat temperature
155 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
156
157
158
159 Consider the BLE coverage , there is two cases:
160
161 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
162
163 Probe will establish connection to the charge via BLE.  and the data flow is as below.
164 )))
165
166 [[image:1753622303925-386.png]]
167
168
169 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
170
171 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
172
173 For example:
174
175 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
176
177 2) User can use Mobile phone to get the broadcast signal and further process.
178
179
180 == 2.2 Activate Device ==
181
182 To use DMT01 send data to LoRaWAN network, user need to:
183
184 1. Input the OTAA Keys in LoRaWAN Network Server
185 1. Make sure there is LoraWAN network
186 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
187
188
189
190 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
191 )))
192
193
194 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
195
196
197 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
198
199 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
200
201 [[image:1754298519453-808.jpg||height="211" width="951"]]
202
203
204 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
205
206 Each DMT01 is shipped with a sticker with the default device EUI as below:
207
208 [[image:1754298588891-599.jpeg]](% style="display:none" %)
209
210 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
211
212 (% style="color:blue" %)**Create the application.**
213
214 [[image:1754298671647-982.png]]
215
216 [[image:1754298685721-106.png]]
217
218 (% style="color:blue" %)**Add devices to the created Application.**
219
220 [[image:1754298708270-733.png]]
221
222 [[image:1754298719336-394.png]]
223
224 (% style="color:blue" %)**Enter end device specifics manually.**
225
226 [[image:1754298737089-161.png]]
227
228 (% style="color:blue" %)**Add DevEUI and AppKey.**
229
230 (% style="color:blue" %)**Customize a platform ID for the device.**
231
232 [[image:1754298751553-229.png]]
233
234
235 (% style="color:blue" %)**Step 2: **(%%)Add decoder
236
237 In TTN, user can add a custom payload so it shows friendly reading.
238
239 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
240
241 Below is TTN screen shot:
242
243 [[image:1754298862776-783.png||height="609" width="1426"]]
244
245 [[image:1754299076396-787.png]]
246
247 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
248
249 Press the button for 3 seconds to activate the DMT01.
250
251 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
252
253 [[image:1754298481895-828.png||height="441" width="1387"]]
254
255
256
257 == 2.3 LoRaWAN Payload ==
258
259
260 === 2.3.1 Probe in-place detection, FPORT~=6 ===
261
262 There are three types of detection:
263
264 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
265 * The payload includes the** Timestamp, ProbeEvent and relay box battery level**.
266
267 The Payload format is as below:
268
269 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
270 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
271 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**4**|(% style="width:98px" %)**1**|(% style="width:103px" %)**1**
272 |(% style="width:103px" %)Value|(% style="width:91px" %)Timestamp|(% style="width:98px" %)ProbeEvent|(% style="width:103px" %)relay box battery level
273
274 Example in TTN:
275
276 [[image:1754557417277-862.png||height="322" width="1388"]]
277
278
279 (% style="color:#037691" %)**Timestamp**(%%): 0x68946BB4
280
281 (% style="color:#037691" %)**ProbeEvent**(%%):
282
283 0x03 = PROBE_FULL
284
285 0x02 = PROBE_OUT
286
287 0x01 = PROBE_IN
288
289 (% style="color:#037691" %)**relay box battery level**(%%):0x32 = 50%
290
291
292 === 2.3.1 Device Status, FPORT~=5 ===
293
294
295 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
296
297 The Payload format is as below.
298
299 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
300 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
301 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
302 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
303
304 Example in TTN:
305
306 [[image:1754299464263-797.png||height="274" width="1384"]]
307
308
309 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
310
311 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
312
313 (% style="color:#037691" %)**Frequency Band**(%%):
314
315 0x01: EU868
316
317 0x02: US915
318
319 0x03: IN865
320
321 0x04: AU915
322
323 0x05: KZ865
324
325 0x06: RU864
326
327 0x07: AS923
328
329 0x08: AS923-1
330
331 0x09: AS923-2
332
333 0x0a: AS923-3
334
335 0x0b: CN470
336
337 0x0c: EU433
338
339 0x0d: KR920
340
341 0x0e: MA869
342
343 (% style="color:#037691" %)**Sub-Band**(%%):
344
345 AU915 and US915:value 0x00 ~~ 0x08
346
347 CN470: value 0x0B ~~ 0x0C
348
349 Other Bands: Always 0x00
350
351
352 === 2.3.2  Sensor Data. FPORT~=2 ===
353
354
355 Sensor Data is uplink via FPORT=2
356
357 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
358 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
359 **Size(bytes)**
360 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
361 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
362 Timestamp
363
364
365 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
366 BoxBat
367 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
368
369 [[image:1754300947187-648.png||height="641" width="1351"]]
370
371
372
373 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
374
375 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
376
377 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
378
379
380 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
381
382 **Example**:
383
384 If payload is 0x01: BLE_LoRa
385
386 If payload is 0x02: LoRa
387
388 If payload is 0x03: BLE
389
390
391 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
392
393 **Example**:
394
395 If the payload is C12309250F1A, the MACaddr is C12309250F1A
396
397
398 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
399
400 **Example:**
401
402 If payload is 0x64 = 100%
403
404
405 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
406
407 **Example:**
408
409 If payload is 0x46 = 70%
410
411
412 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
413
414 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
415
416 **Example**:
417
418 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
419
420 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
421
422
423 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
424
425 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
426
427 **Example**:
428
429 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
430
431 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
432
433
434
435 == 2.4 Bluetoothe Broadcast Payload ==
436
437 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
438
439 Example:
440
441 Note: The following data is obtained through the **nRF Connect tool**.
442
443 [[image:1754305290140-806.jpg||height="680" width="432"]]
444
445
446 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
447
448 (% style="color:red" %)**Note: **
449
450 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
451 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
452
453 So the payload is:**01C12309250F1AD100CD006446**
454
455
456 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
457
458 Example: 0x0201060609444D5430310EFF
459
460
461 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
462
463 **Example**:
464
465 If payload is 0x01: BLE_LoRa
466
467 If payload is 0x02: LoRa
468
469 If payload is 0x03: BLE
470
471
472 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
473
474 **Example**:
475
476 If the payload is C12309250F1A, the MACaddr is C12309250F1A
477
478
479 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
480
481 **Example:**
482
483 If payload is 0x64 = 100%
484
485
486 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
487
488 **Example:**
489
490 If payload is 0x46 = 70%
491
492
493 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
494
495 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
496
497 **Example**:
498
499 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
500
501 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
502
503
504 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
505
506 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
507
508 **Example**:
509
510 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
511
512 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
513
514
515 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
516
517 Example: 0x0512E001E001
518
519
520
521 == 2.5 Datalog Feature ==
522
523
524 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
525
526
527 === 2.5.1 How datalog works ===
528
529
530 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
531
532 * (((
533 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
534 )))
535 * (((
536 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
537
538
539 )))
540
541 === 2.5.2 Enable Datalog ===
542
543 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
544
545 * (((
546 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
547 )))
548 * (((
549 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
550 )))
551
552
553
554 === 2.5.3 Unix TimeStamp ===
555
556
557 DMT01 uses Unix TimeStamp format based on
558
559 [[image:1754354802681-163.jpeg]]
560
561 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
562
563 Below is the converter example
564
565 [[image:1754354818964-624.jpeg]]
566
567
568
569 === 2.5.4 Set Device Time ===
570
571
572 You need to run downlink command 28 01 to enable time synchronization.
573
574 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
575
576 {{info}}
577 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
578 {{/info}}
579
580 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
581
582 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
583 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
584
585
586
587 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
588
589
590 The Datalog uplinks will use below payload format.
591
592 **Retrieval data payload:**
593
594 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
595 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
596 **Size(bytes)**
597 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
598 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
599 Timestamp
600
601
602 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
603 BoxBat
604 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
605 tempData
606
607 Length
608 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
609
610 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
611
612 **Poll Message Flag**: 1: This message is a poll message reply.
613
614 * Poll Message Flag is set to 1.
615
616 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
617
618 For example, in US915 band, the max payload for different DR is:
619
620 **a) DR0:** max is 11 bytes so one entry of data
621
622 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
623
624 **c) DR2:** total payload includes 11 entries of data
625
626 **d) DR3: **total payload includes 22 entries of data.
627
628 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
629
630
631 If user sends below downlink command: 316892FD706893103005
632
633 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
634
635 Stop time: 68931030 = time 25/8/6 08:20:00
636
637
638 DMT01 **will uplink this payload.**
639
640 [[image:1754468836928-459.png]]
641
642 (((
643 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
644
645 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
646 )))
647
648 (((
649 Where the first 55 bytes is for the first entry:
650 )))
651
652 (((
653 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
654 )))
655
656 (((
657 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
658
659 **DevMode** is 0x01 =  BLE_LoRa
660
661 **MACaddr **is 0xC12309250F1A = C12309250F1A
662
663 **ProbeBat **is 0x64 = 100%
664
665 **BoxBat **is 0x3c = 60%
666
667 **Message Type** is 0x40 = POLL_REPLY
668
669 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
670
671 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
672
673 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
674
675 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
676
677 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
678
679 One set of data contains 10 sets of data, and so on...
680 )))
681
682
683 = 3. Configure DMT01  ~-~- 需要修改 =
684
685
686 DMT01 supports below configure method:
687
688 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
689
690
691
692 == 3.1 General Commands ==
693
694 These commands are to configure:
695
696 * General system settings like: uplink interval.
697 * LoRaWAN protocol & radio related command.
698
699 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
700
701 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
702
703 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
704
705
706 (((
707 == 3.2 Downlink Commands Set ==
708
709
710 These commands only valid for DMT01, as below:
711
712 === 3.2.1 Set Transmit Interval Time ===
713
714
715 (% style="color:#037691" %)**AT Command:**
716
717 There is no AT command to set TDC time.
718
719
720 **Feature**: Change LoRaWAN End Node Transmit Interval.
721
722 (% style="color:blue" %)**Downlink Command: 0x01**
723
724 Format: Command Code (0x01) followed by 3 bytes time value.
725
726 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
727
728 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
729 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
730
731
732
733 === 3.2.2 Get Device Status ===
734
735
736 Send a LoRaWAN downlink to request the device's alarm settings.
737
738
739 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
740
741 The sensor will upload device status via FPort=5. See the payload section for details.
742
743
744 === 3.2.3 Clear Flash Record ===
745
746
747 (% style="color:#037691" %)**AT Command:**
748
749 There is no AT command to Clear flash storage for the data log feature
750
751
752 **Feature**: Clear flash storage for the  data log feature.
753
754 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
755
756 * Example: 0x0801  ~/~/ Clears all saved data in flash.
757
758
759
760 === 3.2.4 Confirmed Mode ===
761
762
763 (% style="color:#037691" %)**AT Command:**
764
765 There is no AT command to control whether Confirmed Mode is enabled or disabled.
766
767
768 **Feature**: Mode for sending data that requires acknowledgment.
769
770 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
771
772 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
773 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
774
775
776
777 === 3.2.5 Set the time synchronization interval ===
778
779
780 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
781
782 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
783
784 * Example: 0x28 01  ~/~/ Synchronize once a day
785 * Example: 0x28 03  ~/~/  Synchronize once every three days
786 )))
787
788
789 === 3.2.6  Alarm Mode ===
790
791
792 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
793
794 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
795
796 Format: Command Code (0x09) followed by 4 bytes.
797
798 Example: 09 aa aa bb bb
799
800 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
801 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
802 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
803 Minimum temperature threshold
804
805 (Minimum not to exceed: -30℃)
806 )))
807 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
808 Maximum temperature threshold
809
810 (Maximum not to exceed: 120℃)
811 )))
812
813 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
814 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
815
816 Note:
817
818 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
819 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
820
821
822
823 === 3.2.7 Multi sampling ===
824
825 **Feature**: Sampling multiple times and uplink together.
826
827 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
828
829 Format: Command Code (0x0A) followed by 3 bytes.
830
831 Example: 0A aa aa bb
832
833 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
834 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
835 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
836 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
837
838 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
839
840
841 = 4. Firmware update =
842
843
844 **Firmware download link **(% class="mark" %)(To be updated...)
845
846 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
847
848 * For LoRa part: OTA firmware update via LoRa.
849
850 * For BLE and controller part.
851
852
853
854 == 4.1 Update LoRa software ==
855
856 (% class="wikigeneratedid" %)
857 User can change firmware DMT01 charger to:
858
859 * Change Frequency band/ region.
860 * Update with new features.
861 * Fix bugs.
862
863 (((
864 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
865
866 **Methods to Update Firmware:**
867
868 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
869
870
871 )))
872
873 == 4.2 Update BLE software ==
874
875 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
876
877 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
878
879 [[image:1754547742655-178.png||height="364" width="1057"]]
880
881
882 Step 2: After the phone is installed, open the installed EspbleOTA
883 [[image:1754548807155-607.gif]]
884
885 (% style="color:red" %)**Note:**
886
887 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
888
889 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
890
891
892 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
893
894 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
895
896 [[image:1754555502747-456.gif||height="659" width="297"]]
897
898
899 Step 4: Wait for the update to complete
900
901 [[image:1754555791301-172.jpg||height="618" width="277"]]
902
903
904
905
906 = 5.  FAQ =
907
908
909
910 = 6.  Order Info =
911
912
913 Part Number: (% style="color:blue" %)**DMT01-XX**
914
915 (% style="color:red" %)**XX:**
916
917 * **EU433**: Frequency bands EU433
918 * **EU868**: Frequency bands EU868
919 * **KR920**: Frequency bands KR920
920 * **CN470**: Frequency bands CN470
921 * **AS923**: Frequency bands AS923
922 * **AU915**: Frequency bands AU915
923 * **US915**: Frequency bands US915
924 * **IN865**: Frequency bands IN865
925 * **CN779**: Frequency bands CN779
926
927 = 7. ​ Packing Info =
928
929
930 (% style="color:#037691" %)**Package Includes:**
931
932 * DMT01 -  Digital Meat Thermoneter x 1
933
934 (% style="color:#037691" %)**Dimension and weight:**
935
936 * Device Size: cm
937 * Device Weight: g
938 * Package Size / pcs : cm
939 * Weight / pcs : g
940
941 = 8.  ​Support =
942
943
944 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
945 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].