Wiki source code of DMT01

Version 80.7 by Mengting Qiu on 2025/08/07 17:08

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the** Timestamp, ProbeEvent and relay box battery level**.
264
265 The Payload format is as below:
266
267 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
268 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
269 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**4**|(% style="width:98px" %)**1**|(% style="width:103px" %)**1**
270 |(% style="width:103px" %)Value|(% style="width:91px" %)Timestamp|(% style="width:98px" %)ProbeEvent|(% style="width:103px" %)relay box battery level
271
272 Example in TTN:
273
274 [[image:1754557417277-862.png||height="322" width="1388"]]
275
276
277 (% style="color:#037691" %)**Timestamp**(%%): 0x68946BB4
278
279 (% style="color:#037691" %)**ProbeEvent**(%%):
280
281 0x03 = PROBE_FULL
282
283 0x02 = PROBE_OUT
284
285 0x01 = PROBE_IN
286
287 (% style="color:#037691" %)**relay box battery level**(%%):0x32 = 50%
288
289
290 === 2.3.1 Device Status, FPORT~=5 ===
291
292
293 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
294
295 The Payload format is as below.
296
297 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
298 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
299 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
300 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
301
302 Example in TTN:
303
304 [[image:1754299464263-797.png||height="274" width="1384"]]
305
306
307 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
308
309 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
310
311 (% style="color:#037691" %)**Frequency Band**(%%):
312
313 0x01: EU868
314
315 0x02: US915
316
317 0x03: IN865
318
319 0x04: AU915
320
321 0x05: KZ865
322
323 0x06: RU864
324
325 0x07: AS923
326
327 0x08: AS923-1
328
329 0x09: AS923-2
330
331 0x0a: AS923-3
332
333 0x0b: CN470
334
335 0x0c: EU433
336
337 0x0d: KR920
338
339 0x0e: MA869
340
341 (% style="color:#037691" %)**Sub-Band**(%%):
342
343 AU915 and US915:value 0x00 ~~ 0x08
344
345 CN470: value 0x0B ~~ 0x0C
346
347 Other Bands: Always 0x00
348
349
350 === 2.3.2  Sensor Data. FPORT~=2 ===
351
352
353 Sensor Data is uplink via FPORT=2
354
355 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
356 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
357 **Size(bytes)**
358 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
359 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
360 Timestamp
361
362
363 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
364 BoxBat
365 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
366
367 [[image:1754300947187-648.png||height="641" width="1351"]]
368
369
370
371 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
372
373 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
374
375 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
376
377
378 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
379
380 **Example**:
381
382 If payload is 0x01: BLE_LoRa
383
384 If payload is 0x02: LoRa
385
386 If payload is 0x03: BLE
387
388
389 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
390
391 **Example**:
392
393 If the payload is C12309250F1A, the MACaddr is C12309250F1A
394
395
396 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
397
398 **Example:**
399
400 If payload is 0x64 = 100%
401
402
403 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
404
405 **Example:**
406
407 If payload is 0x46 = 70%
408
409
410 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
411
412 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
413
414 **Example**:
415
416 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
417
418 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
419
420
421 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
422
423 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
424
425 **Example**:
426
427 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
428
429 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
430
431
432
433 == 2.4 Bluetoothe Broadcast Payload ==
434
435 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
436
437 Example:
438
439 Note: The following data is obtained through the **nRF Connect tool**.
440
441 [[image:1754305290140-806.jpg||height="680" width="432"]]
442
443
444 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
445
446 (% style="color:red" %)**Note: **
447
448 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
449 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
450
451 So the payload is:**01C12309250F1AD100CD006446**
452
453
454 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
455
456 Example: 0x0201060609444D5430310EFF
457
458
459 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
460
461 **Example**:
462
463 If payload is 0x01: BLE_LoRa
464
465 If payload is 0x02: LoRa
466
467 If payload is 0x03: BLE
468
469
470 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
471
472 **Example**:
473
474 If the payload is C12309250F1A, the MACaddr is C12309250F1A
475
476
477 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
478
479 **Example:**
480
481 If payload is 0x64 = 100%
482
483
484 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
485
486 **Example:**
487
488 If payload is 0x46 = 70%
489
490
491 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
492
493 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
494
495 **Example**:
496
497 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
498
499 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
500
501
502 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
503
504 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
505
506 **Example**:
507
508 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
509
510 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
511
512
513 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
514
515 Example: 0x0512E001E001
516
517
518
519 == 2.5 Datalog Feature ==
520
521
522 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
523
524
525 === 2.5.1 How datalog works ===
526
527
528 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
529
530 * (((
531 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
532 )))
533 * (((
534 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
535
536
537 )))
538
539 === 2.5.2 Enable Datalog ===
540
541 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
542
543 * (((
544 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
545 )))
546 * (((
547 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
548 )))
549
550
551
552 === 2.5.3 Unix TimeStamp ===
553
554
555 DMT01 uses Unix TimeStamp format based on
556
557 [[image:1754354802681-163.jpeg]]
558
559 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
560
561 Below is the converter example
562
563 [[image:1754354818964-624.jpeg]]
564
565
566
567 === 2.5.4 Set Device Time ===
568
569
570 You need to run downlink command 28 01 to enable time synchronization.
571
572 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
573
574 {{info}}
575 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
576 {{/info}}
577
578 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
579
580 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
581 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
582
583
584
585 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
586
587
588 The Datalog uplinks will use below payload format.
589
590 **Retrieval data payload:**
591
592 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
593 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
594 **Size(bytes)**
595 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
596 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
597 Timestamp
598
599
600 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
601 BoxBat
602 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
603 tempData
604
605 Length
606 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
607
608 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
609
610 **Poll Message Flag**: 1: This message is a poll message reply.
611
612 * Poll Message Flag is set to 1.
613
614 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
615
616 For example, in US915 band, the max payload for different DR is:
617
618 **a) DR0:** max is 11 bytes so one entry of data
619
620 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
621
622 **c) DR2:** total payload includes 11 entries of data
623
624 **d) DR3: **total payload includes 22 entries of data.
625
626 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
627
628
629 If user sends below downlink command: 316892FD706893103005
630
631 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
632
633 Stop time: 68931030 = time 25/8/6 08:20:00
634
635
636 DMT01 **will uplink this payload.**
637
638 [[image:1754468836928-459.png]]
639
640 (((
641 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
642
643 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
644 )))
645
646 (((
647 Where the first 55 bytes is for the first entry:
648 )))
649
650 (((
651 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
652 )))
653
654 (((
655 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
656
657 **DevMode** is 0x01 =  BLE_LoRa
658
659 **MACaddr **is 0xC12309250F1A = C12309250F1A
660
661 **ProbeBat **is 0x64 = 100%
662
663 **BoxBat **is 0x3c = 60%
664
665 **Message Type** is 0x40 = POLL_REPLY
666
667 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
668
669 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
670
671 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
672
673 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
674
675 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
676
677 One set of data contains 10 sets of data, and so on...
678 )))
679
680
681 = 3. Configure DMT01  ~-~- 需要修改 =
682
683
684 DMT01 supports below configure method:
685
686 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
687
688
689
690 == 3.1 General Commands ==
691
692 These commands are to configure:
693
694 * General system settings like: uplink interval.
695 * LoRaWAN protocol & radio related command.
696
697 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
698
699 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
700
701 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
702
703
704 (((
705 == 3.2 Downlink Commands Set ==
706
707
708 These commands only valid for DMT01, as below:
709
710 === 3.2.1 Set Transmit Interval Time ===
711
712
713 (% style="color:#037691" %)**AT Command:**
714
715 There is no AT command to set TDC time.
716
717
718 **Feature**: Change LoRaWAN End Node Transmit Interval.
719
720 (% style="color:blue" %)**Downlink Command: 0x01**
721
722 Format: Command Code (0x01) followed by 3 bytes time value.
723
724 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
725
726 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
727 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
728
729
730
731 === 3.2.2 Get Device Status ===
732
733
734 Send a LoRaWAN downlink to request the device's alarm settings.
735
736
737 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
738
739 The sensor will upload device status via FPort=5. See the payload section for details.
740
741
742 === 3.2.3 Clear Flash Record ===
743
744
745 (% style="color:#037691" %)**AT Command:**
746
747 There is no AT command to Clear flash storage for the data log feature
748
749
750 **Feature**: Clear flash storage for the  data log feature.
751
752 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
753
754 * Example: 0x0801  ~/~/ Clears all saved data in flash.
755
756
757
758 === 3.2.4 Confirmed Mode ===
759
760
761 (% style="color:#037691" %)**AT Command:**
762
763 There is no AT command to control whether Confirmed Mode is enabled or disabled.
764
765
766 **Feature**: Mode for sending data that requires acknowledgment.
767
768 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
769
770 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
771 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
772
773
774
775 === 3.2.5 Set the time synchronization interval ===
776
777
778 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
779
780 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
781
782 * Example: 0x28 01  ~/~/ Synchronize once a day
783 * Example: 0x28 03  ~/~/  Synchronize once every three days
784 )))
785
786
787 === 3.2.6  Alarm Mode ===
788
789
790 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
791
792 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
793
794 Format: Command Code (0x09) followed by 4 bytes.
795
796 Example: 09 aa aa bb bb
797
798 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
799 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
800 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
801 Minimum temperature threshold
802
803 (Minimum not to exceed: -30℃)
804 )))
805 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
806 Maximum temperature threshold
807
808 (Maximum not to exceed: 120℃)
809 )))
810
811 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
812 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
813
814 Note:
815
816 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
817 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
818
819
820
821 === 3.2.7 Multi sampling ===
822
823 **Feature**: Sampling multiple times and uplink together.
824
825 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
826
827 Format: Command Code (0x0A) followed by 3 bytes.
828
829 Example: 0A aa aa bb
830
831 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
832 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
833 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
834 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
835
836 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
837
838
839 = 4. Firmware update =
840
841
842 **Firmware download link **(% class="mark" %)(To be updated...)
843
844 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
845
846 * For LoRa part: OTA firmware update via LoRa.
847
848 * For BLE and controller part.
849
850
851
852 == 4.1 Update LoRa software ==
853
854 (% class="wikigeneratedid" %)
855 User can change firmware DMT01 charger to:
856
857 * Change Frequency band/ region.
858 * Update with new features.
859 * Fix bugs.
860
861 (((
862 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
863
864 **Methods to Update Firmware:**
865
866 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
867
868
869 )))
870
871 == 4.2 Update BLE software ==
872
873 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
874
875 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
876
877 [[image:1754547742655-178.png||height="364" width="1057"]]
878
879
880 Step 2: After the phone is installed, open the installed EspbleOTA
881 [[image:1754548807155-607.gif]]
882
883 (% style="color:red" %)**Note:**
884
885 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
886
887 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
888
889
890 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
891
892 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
893
894 [[image:1754555502747-456.gif||height="659" width="297"]]
895
896
897 Step 4: Wait for the update to complete
898
899 [[image:1754555791301-172.jpg||height="618" width="277"]]
900
901
902
903
904 = 5.  FAQ =
905
906
907
908 = 6.  Order Info =
909
910
911 Part Number: (% style="color:blue" %)**DMT01-XX**
912
913 (% style="color:red" %)**XX:**
914
915 * **EU433**: Frequency bands EU433
916 * **EU868**: Frequency bands EU868
917 * **KR920**: Frequency bands KR920
918 * **CN470**: Frequency bands CN470
919 * **AS923**: Frequency bands AS923
920 * **AU915**: Frequency bands AU915
921 * **US915**: Frequency bands US915
922 * **IN865**: Frequency bands IN865
923 * **CN779**: Frequency bands CN779
924
925 = 7. ​ Packing Info =
926
927
928 (% style="color:#037691" %)**Package Includes:**
929
930 * DMT01 -  Digital Meat Thermoneter x 1
931
932 (% style="color:#037691" %)**Dimension and weight:**
933
934 * Device Size: cm
935 * Device Weight: g
936 * Package Size / pcs : cm
937 * Weight / pcs : g
938
939 = 8.  ​Support =
940
941
942 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
943 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].