Wiki source code of DMT01

Version 80.5 by Mengting Qiu on 2025/08/07 17:06

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the** Timestamp, ProbeEvent and relay box battery level**.
264
265 The Payload format is as below:
266
267 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
268 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
269 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**4**|(% style="width:98px" %)**1**|(% style="width:103px" %)**1**
270 |(% style="width:103px" %)Value|(% style="width:91px" %)Timestamp|(% style="width:98px" %)ProbeEvent|(% style="width:103px" %)relay box battery level
271
272 Example in TTN:
273
274 [[image:1754557417277-862.png||height="322" width="1388"]]
275
276 0332
277
278 (% style="color:#037691" %)**Timestamp**(%%): 0x68946BB4
279
280 (% style="color:#037691" %)**ProbeEvent**(%%): 0x03
281
282 (% style="color:#037691" %)**Frequency Band**(%%):
283
284
285 === 2.3.1 Device Status, FPORT~=5 ===
286
287
288 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
289
290 The Payload format is as below.
291
292 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
293 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
294 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
295 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
296
297 Example in TTN:
298
299 [[image:1754299464263-797.png||height="274" width="1384"]]
300
301
302 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
303
304 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
305
306 (% style="color:#037691" %)**Frequency Band**(%%):
307
308 0x01: EU868
309
310 0x02: US915
311
312 0x03: IN865
313
314 0x04: AU915
315
316 0x05: KZ865
317
318 0x06: RU864
319
320 0x07: AS923
321
322 0x08: AS923-1
323
324 0x09: AS923-2
325
326 0x0a: AS923-3
327
328 0x0b: CN470
329
330 0x0c: EU433
331
332 0x0d: KR920
333
334 0x0e: MA869
335
336 (% style="color:#037691" %)**Sub-Band**(%%):
337
338 AU915 and US915:value 0x00 ~~ 0x08
339
340 CN470: value 0x0B ~~ 0x0C
341
342 Other Bands: Always 0x00
343
344
345 === 2.3.2  Sensor Data. FPORT~=2 ===
346
347
348 Sensor Data is uplink via FPORT=2
349
350 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
351 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
352 **Size(bytes)**
353 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
354 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
355 Timestamp
356
357
358 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
359 BoxBat
360 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
361
362 [[image:1754300947187-648.png||height="641" width="1351"]]
363
364
365
366 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
367
368 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
369
370 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
371
372
373 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
374
375 **Example**:
376
377 If payload is 0x01: BLE_LoRa
378
379 If payload is 0x02: LoRa
380
381 If payload is 0x03: BLE
382
383
384 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
385
386 **Example**:
387
388 If the payload is C12309250F1A, the MACaddr is C12309250F1A
389
390
391 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
392
393 **Example:**
394
395 If payload is 0x64 = 100%
396
397
398 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
399
400 **Example:**
401
402 If payload is 0x46 = 70%
403
404
405 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
406
407 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
408
409 **Example**:
410
411 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
412
413 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
414
415
416 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
417
418 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
419
420 **Example**:
421
422 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
423
424 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
425
426
427
428 == 2.4 Bluetoothe Broadcast Payload ==
429
430 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
431
432 Example:
433
434 Note: The following data is obtained through the **nRF Connect tool**.
435
436 [[image:1754305290140-806.jpg||height="680" width="432"]]
437
438
439 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
440
441 (% style="color:red" %)**Note: **
442
443 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
444 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
445
446 So the payload is:**01C12309250F1AD100CD006446**
447
448
449 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
450
451 Example: 0x0201060609444D5430310EFF
452
453
454 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
455
456 **Example**:
457
458 If payload is 0x01: BLE_LoRa
459
460 If payload is 0x02: LoRa
461
462 If payload is 0x03: BLE
463
464
465 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
466
467 **Example**:
468
469 If the payload is C12309250F1A, the MACaddr is C12309250F1A
470
471
472 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
473
474 **Example:**
475
476 If payload is 0x64 = 100%
477
478
479 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
480
481 **Example:**
482
483 If payload is 0x46 = 70%
484
485
486 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
487
488 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
489
490 **Example**:
491
492 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
493
494 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
495
496
497 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
498
499 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
500
501 **Example**:
502
503 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
504
505 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
506
507
508 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
509
510 Example: 0x0512E001E001
511
512
513
514 == 2.5 Datalog Feature ==
515
516
517 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
518
519
520 === 2.5.1 How datalog works ===
521
522
523 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
524
525 * (((
526 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
527 )))
528 * (((
529 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
530
531
532 )))
533
534 === 2.5.2 Enable Datalog ===
535
536 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
537
538 * (((
539 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
540 )))
541 * (((
542 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
543 )))
544
545
546
547 === 2.5.3 Unix TimeStamp ===
548
549
550 DMT01 uses Unix TimeStamp format based on
551
552 [[image:1754354802681-163.jpeg]]
553
554 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
555
556 Below is the converter example
557
558 [[image:1754354818964-624.jpeg]]
559
560
561
562 === 2.5.4 Set Device Time ===
563
564
565 You need to run downlink command 28 01 to enable time synchronization.
566
567 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
568
569 {{info}}
570 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
571 {{/info}}
572
573 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
574
575 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
576 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
577
578
579
580 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
581
582
583 The Datalog uplinks will use below payload format.
584
585 **Retrieval data payload:**
586
587 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
588 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
589 **Size(bytes)**
590 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
591 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
592 Timestamp
593
594
595 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
596 BoxBat
597 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
598 tempData
599
600 Length
601 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
602
603 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
604
605 **Poll Message Flag**: 1: This message is a poll message reply.
606
607 * Poll Message Flag is set to 1.
608
609 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
610
611 For example, in US915 band, the max payload for different DR is:
612
613 **a) DR0:** max is 11 bytes so one entry of data
614
615 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
616
617 **c) DR2:** total payload includes 11 entries of data
618
619 **d) DR3: **total payload includes 22 entries of data.
620
621 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
622
623
624 If user sends below downlink command: 316892FD706893103005
625
626 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
627
628 Stop time: 68931030 = time 25/8/6 08:20:00
629
630
631 DMT01 **will uplink this payload.**
632
633 [[image:1754468836928-459.png]]
634
635 (((
636 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
637
638 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
639 )))
640
641 (((
642 Where the first 55 bytes is for the first entry:
643 )))
644
645 (((
646 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
647 )))
648
649 (((
650 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
651
652 **DevMode** is 0x01 =  BLE_LoRa
653
654 **MACaddr **is 0xC12309250F1A = C12309250F1A
655
656 **ProbeBat **is 0x64 = 100%
657
658 **BoxBat **is 0x3c = 60%
659
660 **Message Type** is 0x40 = POLL_REPLY
661
662 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
663
664 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
665
666 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
667
668 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
669
670 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
671
672 One set of data contains 10 sets of data, and so on...
673 )))
674
675
676 = 3. Configure DMT01  ~-~- 需要修改 =
677
678
679 DMT01 supports below configure method:
680
681 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
682
683
684
685 == 3.1 General Commands ==
686
687 These commands are to configure:
688
689 * General system settings like: uplink interval.
690 * LoRaWAN protocol & radio related command.
691
692 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
693
694 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
695
696 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
697
698
699 (((
700 == 3.2 Downlink Commands Set ==
701
702
703 These commands only valid for DMT01, as below:
704
705 === 3.2.1 Set Transmit Interval Time ===
706
707
708 (% style="color:#037691" %)**AT Command:**
709
710 There is no AT command to set TDC time.
711
712
713 **Feature**: Change LoRaWAN End Node Transmit Interval.
714
715 (% style="color:blue" %)**Downlink Command: 0x01**
716
717 Format: Command Code (0x01) followed by 3 bytes time value.
718
719 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
720
721 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
722 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
723
724
725
726 === 3.2.2 Get Device Status ===
727
728
729 Send a LoRaWAN downlink to request the device's alarm settings.
730
731
732 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
733
734 The sensor will upload device status via FPort=5. See the payload section for details.
735
736
737 === 3.2.3 Clear Flash Record ===
738
739
740 (% style="color:#037691" %)**AT Command:**
741
742 There is no AT command to Clear flash storage for the data log feature
743
744
745 **Feature**: Clear flash storage for the  data log feature.
746
747 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
748
749 * Example: 0x0801  ~/~/ Clears all saved data in flash.
750
751
752
753 === 3.2.4 Confirmed Mode ===
754
755
756 (% style="color:#037691" %)**AT Command:**
757
758 There is no AT command to control whether Confirmed Mode is enabled or disabled.
759
760
761 **Feature**: Mode for sending data that requires acknowledgment.
762
763 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
764
765 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
766 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
767
768
769
770 === 3.2.5 Set the time synchronization interval ===
771
772
773 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
774
775 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
776
777 * Example: 0x28 01  ~/~/ Synchronize once a day
778 * Example: 0x28 03  ~/~/  Synchronize once every three days
779 )))
780
781
782 === 3.2.6  Alarm Mode ===
783
784
785 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
786
787 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
788
789 Format: Command Code (0x09) followed by 4 bytes.
790
791 Example: 09 aa aa bb bb
792
793 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
794 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
795 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
796 Minimum temperature threshold
797
798 (Minimum not to exceed: -30℃)
799 )))
800 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
801 Maximum temperature threshold
802
803 (Maximum not to exceed: 120℃)
804 )))
805
806 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
807 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
808
809 Note:
810
811 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
812 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
813
814
815
816 === 3.2.7 Multi sampling ===
817
818 **Feature**: Sampling multiple times and uplink together.
819
820 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
821
822 Format: Command Code (0x0A) followed by 3 bytes.
823
824 Example: 0A aa aa bb
825
826 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
827 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
828 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
829 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
830
831 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
832
833
834 = 4. Firmware update =
835
836
837 **Firmware download link **(% class="mark" %)(To be updated...)
838
839 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
840
841 * For LoRa part: OTA firmware update via LoRa.
842
843 * For BLE and controller part.
844
845
846
847 == 4.1 Update LoRa software ==
848
849 (% class="wikigeneratedid" %)
850 User can change firmware DMT01 charger to:
851
852 * Change Frequency band/ region.
853 * Update with new features.
854 * Fix bugs.
855
856 (((
857 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
858
859 **Methods to Update Firmware:**
860
861 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
862
863
864 )))
865
866 == 4.2 Update BLE software ==
867
868 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
869
870 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
871
872 [[image:1754547742655-178.png||height="364" width="1057"]]
873
874
875 Step 2: After the phone is installed, open the installed EspbleOTA
876 [[image:1754548807155-607.gif]]
877
878 (% style="color:red" %)**Note:**
879
880 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
881
882 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
883
884
885 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
886
887 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
888
889 [[image:1754555502747-456.gif||height="659" width="297"]]
890
891
892 Step 4: Wait for the update to complete
893
894 [[image:1754555791301-172.jpg||height="618" width="277"]]
895
896
897
898
899 = 5.  FAQ =
900
901
902
903 = 6.  Order Info =
904
905
906 Part Number: (% style="color:blue" %)**DMT01-XX**
907
908 (% style="color:red" %)**XX:**
909
910 * **EU433**: Frequency bands EU433
911 * **EU868**: Frequency bands EU868
912 * **KR920**: Frequency bands KR920
913 * **CN470**: Frequency bands CN470
914 * **AS923**: Frequency bands AS923
915 * **AU915**: Frequency bands AU915
916 * **US915**: Frequency bands US915
917 * **IN865**: Frequency bands IN865
918 * **CN779**: Frequency bands CN779
919
920 = 7. ​ Packing Info =
921
922
923 (% style="color:#037691" %)**Package Includes:**
924
925 * DMT01 -  Digital Meat Thermoneter x 1
926
927 (% style="color:#037691" %)**Dimension and weight:**
928
929 * Device Size: cm
930 * Device Weight: g
931 * Package Size / pcs : cm
932 * Weight / pcs : g
933
934 = 8.  ​Support =
935
936
937 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
938 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].