Wiki source code of DMT01

Version 80.3 by Mengting Qiu on 2025/08/07 17:04

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the** Timestamp, ProbeEvent and relay box battery level**.
264
265 The Payload format is as below:
266
267 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
268 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
269 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**4**|(% style="width:98px" %)**1**|(% style="width:103px" %)**1**
270 |(% style="width:103px" %)Value|(% style="width:91px" %)Timestamp|(% style="width:98px" %)ProbeEvent|(% style="width:103px" %)relay box battery level
271
272 Example in TTN:
273
274 [[image:1754557417277-862.png||height="322" width="1388"]]
275
276 (% style="color:#037691" %)**Timesta**(%%): For DMT01, this value is 0x4B
277
278 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
279
280 (% style="color:#037691" %)**Frequency Band**(%%):
281
282
283 === 2.3.1 Device Status, FPORT~=5 ===
284
285
286 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
287
288 The Payload format is as below.
289
290 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
291 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
292 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
293 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
294
295 Example in TTN:
296
297 [[image:1754299464263-797.png||height="274" width="1384"]]
298
299
300 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
301
302 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
303
304 (% style="color:#037691" %)**Frequency Band**(%%):
305
306 0x01: EU868
307
308 0x02: US915
309
310 0x03: IN865
311
312 0x04: AU915
313
314 0x05: KZ865
315
316 0x06: RU864
317
318 0x07: AS923
319
320 0x08: AS923-1
321
322 0x09: AS923-2
323
324 0x0a: AS923-3
325
326 0x0b: CN470
327
328 0x0c: EU433
329
330 0x0d: KR920
331
332 0x0e: MA869
333
334 (% style="color:#037691" %)**Sub-Band**(%%):
335
336 AU915 and US915:value 0x00 ~~ 0x08
337
338 CN470: value 0x0B ~~ 0x0C
339
340 Other Bands: Always 0x00
341
342
343 === 2.3.2  Sensor Data. FPORT~=2 ===
344
345
346 Sensor Data is uplink via FPORT=2
347
348 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
349 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
350 **Size(bytes)**
351 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
352 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
353 Timestamp
354
355
356 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
357 BoxBat
358 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
359
360 [[image:1754300947187-648.png||height="641" width="1351"]]
361
362
363
364 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
365
366 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
367
368 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
369
370
371 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
372
373 **Example**:
374
375 If payload is 0x01: BLE_LoRa
376
377 If payload is 0x02: LoRa
378
379 If payload is 0x03: BLE
380
381
382 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
383
384 **Example**:
385
386 If the payload is C12309250F1A, the MACaddr is C12309250F1A
387
388
389 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
390
391 **Example:**
392
393 If payload is 0x64 = 100%
394
395
396 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
397
398 **Example:**
399
400 If payload is 0x46 = 70%
401
402
403 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
404
405 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
406
407 **Example**:
408
409 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
410
411 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
412
413
414 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
415
416 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
417
418 **Example**:
419
420 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
421
422 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
423
424
425
426 == 2.4 Bluetoothe Broadcast Payload ==
427
428 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
429
430 Example:
431
432 Note: The following data is obtained through the **nRF Connect tool**.
433
434 [[image:1754305290140-806.jpg||height="680" width="432"]]
435
436
437 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
438
439 (% style="color:red" %)**Note: **
440
441 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
442 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
443
444 So the payload is:**01C12309250F1AD100CD006446**
445
446
447 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
448
449 Example: 0x0201060609444D5430310EFF
450
451
452 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
453
454 **Example**:
455
456 If payload is 0x01: BLE_LoRa
457
458 If payload is 0x02: LoRa
459
460 If payload is 0x03: BLE
461
462
463 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
464
465 **Example**:
466
467 If the payload is C12309250F1A, the MACaddr is C12309250F1A
468
469
470 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
471
472 **Example:**
473
474 If payload is 0x64 = 100%
475
476
477 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
478
479 **Example:**
480
481 If payload is 0x46 = 70%
482
483
484 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
485
486 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
487
488 **Example**:
489
490 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
491
492 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
493
494
495 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
496
497 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
498
499 **Example**:
500
501 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
502
503 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
504
505
506 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
507
508 Example: 0x0512E001E001
509
510
511
512 == 2.5 Datalog Feature ==
513
514
515 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
516
517
518 === 2.5.1 How datalog works ===
519
520
521 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
522
523 * (((
524 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
525 )))
526 * (((
527 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
528
529
530 )))
531
532 === 2.5.2 Enable Datalog ===
533
534 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
535
536 * (((
537 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
538 )))
539 * (((
540 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
541 )))
542
543
544
545 === 2.5.3 Unix TimeStamp ===
546
547
548 DMT01 uses Unix TimeStamp format based on
549
550 [[image:1754354802681-163.jpeg]]
551
552 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
553
554 Below is the converter example
555
556 [[image:1754354818964-624.jpeg]]
557
558
559
560 === 2.5.4 Set Device Time ===
561
562
563 You need to run downlink command 28 01 to enable time synchronization.
564
565 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
566
567 {{info}}
568 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
569 {{/info}}
570
571 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
572
573 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
574 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
575
576
577
578 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
579
580
581 The Datalog uplinks will use below payload format.
582
583 **Retrieval data payload:**
584
585 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
586 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
587 **Size(bytes)**
588 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
589 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
590 Timestamp
591
592
593 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
594 BoxBat
595 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
596 tempData
597
598 Length
599 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
600
601 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
602
603 **Poll Message Flag**: 1: This message is a poll message reply.
604
605 * Poll Message Flag is set to 1.
606
607 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
608
609 For example, in US915 band, the max payload for different DR is:
610
611 **a) DR0:** max is 11 bytes so one entry of data
612
613 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
614
615 **c) DR2:** total payload includes 11 entries of data
616
617 **d) DR3: **total payload includes 22 entries of data.
618
619 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
620
621
622 If user sends below downlink command: 316892FD706893103005
623
624 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
625
626 Stop time: 68931030 = time 25/8/6 08:20:00
627
628
629 DMT01 **will uplink this payload.**
630
631 [[image:1754468836928-459.png]]
632
633 (((
634 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
635
636 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
637 )))
638
639 (((
640 Where the first 55 bytes is for the first entry:
641 )))
642
643 (((
644 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
645 )))
646
647 (((
648 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
649
650 **DevMode** is 0x01 =  BLE_LoRa
651
652 **MACaddr **is 0xC12309250F1A = C12309250F1A
653
654 **ProbeBat **is 0x64 = 100%
655
656 **BoxBat **is 0x3c = 60%
657
658 **Message Type** is 0x40 = POLL_REPLY
659
660 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
661
662 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
663
664 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
665
666 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
667
668 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
669
670 One set of data contains 10 sets of data, and so on...
671 )))
672
673
674 = 3. Configure DMT01  ~-~- 需要修改 =
675
676
677 DMT01 supports below configure method:
678
679 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
680
681
682
683 == 3.1 General Commands ==
684
685 These commands are to configure:
686
687 * General system settings like: uplink interval.
688 * LoRaWAN protocol & radio related command.
689
690 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
691
692 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
693
694 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
695
696
697 (((
698 == 3.2 Downlink Commands Set ==
699
700
701 These commands only valid for DMT01, as below:
702
703 === 3.2.1 Set Transmit Interval Time ===
704
705
706 (% style="color:#037691" %)**AT Command:**
707
708 There is no AT command to set TDC time.
709
710
711 **Feature**: Change LoRaWAN End Node Transmit Interval.
712
713 (% style="color:blue" %)**Downlink Command: 0x01**
714
715 Format: Command Code (0x01) followed by 3 bytes time value.
716
717 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
718
719 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
720 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
721
722
723
724 === 3.2.2 Get Device Status ===
725
726
727 Send a LoRaWAN downlink to request the device's alarm settings.
728
729
730 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
731
732 The sensor will upload device status via FPort=5. See the payload section for details.
733
734
735 === 3.2.3 Clear Flash Record ===
736
737
738 (% style="color:#037691" %)**AT Command:**
739
740 There is no AT command to Clear flash storage for the data log feature
741
742
743 **Feature**: Clear flash storage for the  data log feature.
744
745 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
746
747 * Example: 0x0801  ~/~/ Clears all saved data in flash.
748
749
750
751 === 3.2.4 Confirmed Mode ===
752
753
754 (% style="color:#037691" %)**AT Command:**
755
756 There is no AT command to control whether Confirmed Mode is enabled or disabled.
757
758
759 **Feature**: Mode for sending data that requires acknowledgment.
760
761 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
762
763 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
764 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
765
766
767
768 === 3.2.5 Set the time synchronization interval ===
769
770
771 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
772
773 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
774
775 * Example: 0x28 01  ~/~/ Synchronize once a day
776 * Example: 0x28 03  ~/~/  Synchronize once every three days
777 )))
778
779
780 === 3.2.6  Alarm Mode ===
781
782
783 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
784
785 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
786
787 Format: Command Code (0x09) followed by 4 bytes.
788
789 Example: 09 aa aa bb bb
790
791 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
792 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
793 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
794 Minimum temperature threshold
795
796 (Minimum not to exceed: -30℃)
797 )))
798 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
799 Maximum temperature threshold
800
801 (Maximum not to exceed: 120℃)
802 )))
803
804 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
805 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
806
807 Note:
808
809 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
810 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
811
812
813
814 === 3.2.7 Multi sampling ===
815
816 **Feature**: Sampling multiple times and uplink together.
817
818 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
819
820 Format: Command Code (0x0A) followed by 3 bytes.
821
822 Example: 0A aa aa bb
823
824 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
825 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
826 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
827 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
828
829 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
830
831
832 = 4. Firmware update =
833
834
835 **Firmware download link **(% class="mark" %)(To be updated...)
836
837 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
838
839 * For LoRa part: OTA firmware update via LoRa.
840
841 * For BLE and controller part.
842
843
844
845 == 4.1 Update LoRa software ==
846
847 (% class="wikigeneratedid" %)
848 User can change firmware DMT01 charger to:
849
850 * Change Frequency band/ region.
851 * Update with new features.
852 * Fix bugs.
853
854 (((
855 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
856
857 **Methods to Update Firmware:**
858
859 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
860
861
862 )))
863
864 == 4.2 Update BLE software ==
865
866 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
867
868 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
869
870 [[image:1754547742655-178.png||height="364" width="1057"]]
871
872
873 Step 2: After the phone is installed, open the installed EspbleOTA
874 [[image:1754548807155-607.gif]]
875
876 (% style="color:red" %)**Note:**
877
878 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
879
880 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
881
882
883 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
884
885 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
886
887 [[image:1754555502747-456.gif||height="659" width="297"]]
888
889
890 Step 4: Wait for the update to complete
891
892 [[image:1754555791301-172.jpg||height="618" width="277"]]
893
894
895
896
897 = 5.  FAQ =
898
899
900
901 = 6.  Order Info =
902
903
904 Part Number: (% style="color:blue" %)**DMT01-XX**
905
906 (% style="color:red" %)**XX:**
907
908 * **EU433**: Frequency bands EU433
909 * **EU868**: Frequency bands EU868
910 * **KR920**: Frequency bands KR920
911 * **CN470**: Frequency bands CN470
912 * **AS923**: Frequency bands AS923
913 * **AU915**: Frequency bands AU915
914 * **US915**: Frequency bands US915
915 * **IN865**: Frequency bands IN865
916 * **CN779**: Frequency bands CN779
917
918 = 7. ​ Packing Info =
919
920
921 (% style="color:#037691" %)**Package Includes:**
922
923 * DMT01 -  Digital Meat Thermoneter x 1
924
925 (% style="color:#037691" %)**Dimension and weight:**
926
927 * Device Size: cm
928 * Device Weight: g
929 * Package Size / pcs : cm
930 * Weight / pcs : g
931
932 = 8.  ​Support =
933
934
935 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
936 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].