Wiki source code of DMT01

Version 79.9 by Mengting Qiu on 2025/08/07 16:56

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the** time, relay box battery level and ProbeEvent**.
264
265 The Payload format is as below:
266
267 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
268 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
269 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**
270 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band
271
272
273
274
275
276 === 2.3.1 Device Status, FPORT~=5 ===
277
278
279 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
280
281 The Payload format is as below.
282
283 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
284 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
285 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
286 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
287
288 Example in TTN:
289
290 [[image:1754299464263-797.png||height="274" width="1384"]]
291
292
293 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
294
295 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
296
297 (% style="color:#037691" %)**Frequency Band**(%%):
298
299 0x01: EU868
300
301 0x02: US915
302
303 0x03: IN865
304
305 0x04: AU915
306
307 0x05: KZ865
308
309 0x06: RU864
310
311 0x07: AS923
312
313 0x08: AS923-1
314
315 0x09: AS923-2
316
317 0x0a: AS923-3
318
319 0x0b: CN470
320
321 0x0c: EU433
322
323 0x0d: KR920
324
325 0x0e: MA869
326
327 (% style="color:#037691" %)**Sub-Band**(%%):
328
329 AU915 and US915:value 0x00 ~~ 0x08
330
331 CN470: value 0x0B ~~ 0x0C
332
333 Other Bands: Always 0x00
334
335
336 === 2.3.2  Sensor Data. FPORT~=2 ===
337
338
339 Sensor Data is uplink via FPORT=2
340
341 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
342 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
343 **Size(bytes)**
344 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
345 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
346 Timestamp
347
348
349 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
350 BoxBat
351 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
352
353 [[image:1754300947187-648.png||height="641" width="1351"]]
354
355
356
357 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
358
359 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
360
361 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
362
363
364 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
365
366 **Example**:
367
368 If payload is 0x01: BLE_LoRa
369
370 If payload is 0x02: LoRa
371
372 If payload is 0x03: BLE
373
374
375 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
376
377 **Example**:
378
379 If the payload is C12309250F1A, the MACaddr is C12309250F1A
380
381
382 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
383
384 **Example:**
385
386 If payload is 0x64 = 100%
387
388
389 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
390
391 **Example:**
392
393 If payload is 0x46 = 70%
394
395
396 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
397
398 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
399
400 **Example**:
401
402 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
403
404 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
405
406
407 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
408
409 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
410
411 **Example**:
412
413 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
414
415 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
416
417
418
419 == 2.4 Bluetoothe Broadcast Payload ==
420
421 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
422
423 Example:
424
425 Note: The following data is obtained through the **nRF Connect tool**.
426
427 [[image:1754305290140-806.jpg||height="680" width="432"]]
428
429
430 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
431
432 (% style="color:red" %)**Note: **
433
434 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
435 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
436
437 So the payload is:**01C12309250F1AD100CD006446**
438
439
440 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
441
442 Example: 0x0201060609444D5430310EFF
443
444
445 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
446
447 **Example**:
448
449 If payload is 0x01: BLE_LoRa
450
451 If payload is 0x02: LoRa
452
453 If payload is 0x03: BLE
454
455
456 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
457
458 **Example**:
459
460 If the payload is C12309250F1A, the MACaddr is C12309250F1A
461
462
463 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
464
465 **Example:**
466
467 If payload is 0x64 = 100%
468
469
470 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
471
472 **Example:**
473
474 If payload is 0x46 = 70%
475
476
477 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
478
479 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
480
481 **Example**:
482
483 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
484
485 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
486
487
488 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
489
490 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
491
492 **Example**:
493
494 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
495
496 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
497
498
499 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
500
501 Example: 0x0512E001E001
502
503
504
505 == 2.5 Datalog Feature ==
506
507
508 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
509
510
511 === 2.5.1 How datalog works ===
512
513
514 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
515
516 * (((
517 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
518 )))
519 * (((
520 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
521
522
523 )))
524
525 === 2.5.2 Enable Datalog ===
526
527 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
528
529 * (((
530 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
531 )))
532 * (((
533 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
534 )))
535
536
537
538 === 2.5.3 Unix TimeStamp ===
539
540
541 DMT01 uses Unix TimeStamp format based on
542
543 [[image:1754354802681-163.jpeg]]
544
545 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
546
547 Below is the converter example
548
549 [[image:1754354818964-624.jpeg]]
550
551
552
553 === 2.5.4 Set Device Time ===
554
555
556 You need to run downlink command 28 01 to enable time synchronization.
557
558 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
559
560 {{info}}
561 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
562 {{/info}}
563
564 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
565
566 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
567 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
568
569
570
571 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
572
573
574 The Datalog uplinks will use below payload format.
575
576 **Retrieval data payload:**
577
578 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
579 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
580 **Size(bytes)**
581 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
582 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
583 Timestamp
584
585
586 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
587 BoxBat
588 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
589 tempData
590
591 Length
592 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
593
594 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
595
596 **Poll Message Flag**: 1: This message is a poll message reply.
597
598 * Poll Message Flag is set to 1.
599
600 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
601
602 For example, in US915 band, the max payload for different DR is:
603
604 **a) DR0:** max is 11 bytes so one entry of data
605
606 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
607
608 **c) DR2:** total payload includes 11 entries of data
609
610 **d) DR3: **total payload includes 22 entries of data.
611
612 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
613
614
615 If user sends below downlink command: 316892FD706893103005
616
617 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
618
619 Stop time: 68931030 = time 25/8/6 08:20:00
620
621
622 DMT01 **will uplink this payload.**
623
624 [[image:1754468836928-459.png]]
625
626 (((
627 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
628
629 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
630 )))
631
632 (((
633 Where the first 55 bytes is for the first entry:
634 )))
635
636 (((
637 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
638 )))
639
640 (((
641 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
642
643 **DevMode** is 0x01 =  BLE_LoRa
644
645 **MACaddr **is 0xC12309250F1A = C12309250F1A
646
647 **ProbeBat **is 0x64 = 100%
648
649 **BoxBat **is 0x3c = 60%
650
651 **Message Type** is 0x40 = POLL_REPLY
652
653 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
654
655 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
656
657 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
658
659 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
660
661 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
662
663 One set of data contains 10 sets of data, and so on...
664 )))
665
666
667 = 3. Configure DMT01  ~-~- 需要修改 =
668
669
670 DMT01 supports below configure method:
671
672 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
673
674
675
676 == 3.1 General Commands ==
677
678 These commands are to configure:
679
680 * General system settings like: uplink interval.
681 * LoRaWAN protocol & radio related command.
682
683 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
684
685 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
686
687 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
688
689
690 (((
691 == 3.2 Downlink Commands Set ==
692
693
694 These commands only valid for DMT01, as below:
695
696 === 3.2.1 Set Transmit Interval Time ===
697
698
699 (% style="color:#037691" %)**AT Command:**
700
701 There is no AT command to set TDC time.
702
703
704 **Feature**: Change LoRaWAN End Node Transmit Interval.
705
706 (% style="color:blue" %)**Downlink Command: 0x01**
707
708 Format: Command Code (0x01) followed by 3 bytes time value.
709
710 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
711
712 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
713 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
714
715
716
717 === 3.2.2 Get Device Status ===
718
719
720 Send a LoRaWAN downlink to request the device's alarm settings.
721
722
723 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
724
725 The sensor will upload device status via FPort=5. See the payload section for details.
726
727
728 === 3.2.3 Clear Flash Record ===
729
730
731 (% style="color:#037691" %)**AT Command:**
732
733 There is no AT command to Clear flash storage for the data log feature
734
735
736 **Feature**: Clear flash storage for the  data log feature.
737
738 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
739
740 * Example: 0x0801  ~/~/ Clears all saved data in flash.
741
742
743
744 === 3.2.4 Confirmed Mode ===
745
746
747 (% style="color:#037691" %)**AT Command:**
748
749 There is no AT command to control whether Confirmed Mode is enabled or disabled.
750
751
752 **Feature**: Mode for sending data that requires acknowledgment.
753
754 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
755
756 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
757 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
758
759
760
761 === 3.2.5 Set the time synchronization interval ===
762
763
764 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
765
766 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
767
768 * Example: 0x28 01  ~/~/ Synchronize once a day
769 * Example: 0x28 03  ~/~/  Synchronize once every three days
770 )))
771
772
773 === 3.2.6  Alarm Mode ===
774
775
776 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
777
778 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
779
780 Format: Command Code (0x09) followed by 4 bytes.
781
782 Example: 09 aa aa bb bb
783
784 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
785 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
786 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
787 Minimum temperature threshold
788
789 (Minimum not to exceed: -30℃)
790 )))
791 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
792 Maximum temperature threshold
793
794 (Maximum not to exceed: 120℃)
795 )))
796
797 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
798 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
799
800 Note:
801
802 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
803 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
804
805
806
807 === 3.2.7 Multi sampling ===
808
809 **Feature**: Sampling multiple times and uplink together.
810
811 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
812
813 Format: Command Code (0x0A) followed by 3 bytes.
814
815 Example: 0A aa aa bb
816
817 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
818 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
819 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
820 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
821
822 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
823
824
825 = 4. Firmware update =
826
827
828 **Firmware download link **(% class="mark" %)(To be updated...)
829
830 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
831
832 * For LoRa part: OTA firmware update via LoRa.
833
834 * For BLE and controller part.
835
836
837
838 == 4.1 Update LoRa software ==
839
840 (% class="wikigeneratedid" %)
841 User can change firmware DMT01 charger to:
842
843 * Change Frequency band/ region.
844 * Update with new features.
845 * Fix bugs.
846
847 (((
848 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
849
850 **Methods to Update Firmware:**
851
852 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
853
854
855 )))
856
857 == 4.2 Update BLE software ==
858
859 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
860
861 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
862
863 [[image:1754547742655-178.png||height="364" width="1057"]]
864
865
866 Step 2: After the phone is installed, open the installed EspbleOTA
867 [[image:1754548807155-607.gif]]
868
869 (% style="color:red" %)**Note:**
870
871 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
872
873 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
874
875
876 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
877
878 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
879
880 [[image:1754555502747-456.gif||height="659" width="297"]]
881
882
883 Step 4: Wait for the update to complete
884
885 [[image:1754555791301-172.jpg||height="618" width="277"]]
886
887
888
889
890 = 5.  FAQ =
891
892
893
894 = 6.  Order Info =
895
896
897 Part Number: (% style="color:blue" %)**DMT01-XX**
898
899 (% style="color:red" %)**XX:**
900
901 * **EU433**: Frequency bands EU433
902 * **EU868**: Frequency bands EU868
903 * **KR920**: Frequency bands KR920
904 * **CN470**: Frequency bands CN470
905 * **AS923**: Frequency bands AS923
906 * **AU915**: Frequency bands AU915
907 * **US915**: Frequency bands US915
908 * **IN865**: Frequency bands IN865
909 * **CN779**: Frequency bands CN779
910
911 = 7. ​ Packing Info =
912
913
914 (% style="color:#037691" %)**Package Includes:**
915
916 * DMT01 -  Digital Meat Thermoneter x 1
917
918 (% style="color:#037691" %)**Dimension and weight:**
919
920 * Device Size: cm
921 * Device Weight: g
922 * Package Size / pcs : cm
923 * Weight / pcs : g
924
925 = 8.  ​Support =
926
927
928 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
929 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].