Wiki source code of DMT01

Version 79.8 by Mengting Qiu on 2025/08/07 16:54

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the time, relay box battery level and ProbeEvent.
264
265 The Payload format is as below:
266
267
268
269
270
271 === 2.3.1 Device Status, FPORT~=5 ===
272
273
274 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
275
276 The Payload format is as below.
277
278 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
279 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
280 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
281 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
282
283 Example in TTN:
284
285 [[image:1754299464263-797.png||height="274" width="1384"]]
286
287
288 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
289
290 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
291
292 (% style="color:#037691" %)**Frequency Band**(%%):
293
294 0x01: EU868
295
296 0x02: US915
297
298 0x03: IN865
299
300 0x04: AU915
301
302 0x05: KZ865
303
304 0x06: RU864
305
306 0x07: AS923
307
308 0x08: AS923-1
309
310 0x09: AS923-2
311
312 0x0a: AS923-3
313
314 0x0b: CN470
315
316 0x0c: EU433
317
318 0x0d: KR920
319
320 0x0e: MA869
321
322 (% style="color:#037691" %)**Sub-Band**(%%):
323
324 AU915 and US915:value 0x00 ~~ 0x08
325
326 CN470: value 0x0B ~~ 0x0C
327
328 Other Bands: Always 0x00
329
330
331 === 2.3.2  Sensor Data. FPORT~=2 ===
332
333
334 Sensor Data is uplink via FPORT=2
335
336 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
337 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
338 **Size(bytes)**
339 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
340 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
341 Timestamp
342
343
344 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
345 BoxBat
346 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
347
348 [[image:1754300947187-648.png||height="641" width="1351"]]
349
350
351
352 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
353
354 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
355
356 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
357
358
359 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
360
361 **Example**:
362
363 If payload is 0x01: BLE_LoRa
364
365 If payload is 0x02: LoRa
366
367 If payload is 0x03: BLE
368
369
370 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
371
372 **Example**:
373
374 If the payload is C12309250F1A, the MACaddr is C12309250F1A
375
376
377 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
378
379 **Example:**
380
381 If payload is 0x64 = 100%
382
383
384 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
385
386 **Example:**
387
388 If payload is 0x46 = 70%
389
390
391 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
392
393 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
394
395 **Example**:
396
397 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
398
399 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
400
401
402 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
403
404 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
405
406 **Example**:
407
408 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
409
410 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
411
412
413
414 == 2.4 Bluetoothe Broadcast Payload ==
415
416 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
417
418 Example:
419
420 Note: The following data is obtained through the **nRF Connect tool**.
421
422 [[image:1754305290140-806.jpg||height="680" width="432"]]
423
424
425 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
426
427 (% style="color:red" %)**Note: **
428
429 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
430 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
431
432 So the payload is:**01C12309250F1AD100CD006446**
433
434
435 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
436
437 Example: 0x0201060609444D5430310EFF
438
439
440 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
441
442 **Example**:
443
444 If payload is 0x01: BLE_LoRa
445
446 If payload is 0x02: LoRa
447
448 If payload is 0x03: BLE
449
450
451 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
452
453 **Example**:
454
455 If the payload is C12309250F1A, the MACaddr is C12309250F1A
456
457
458 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
459
460 **Example:**
461
462 If payload is 0x64 = 100%
463
464
465 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
466
467 **Example:**
468
469 If payload is 0x46 = 70%
470
471
472 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
473
474 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
475
476 **Example**:
477
478 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
479
480 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
481
482
483 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
484
485 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
486
487 **Example**:
488
489 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
490
491 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
492
493
494 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
495
496 Example: 0x0512E001E001
497
498
499
500 == 2.5 Datalog Feature ==
501
502
503 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
504
505
506 === 2.5.1 How datalog works ===
507
508
509 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
510
511 * (((
512 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
513 )))
514 * (((
515 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
516
517
518 )))
519
520 === 2.5.2 Enable Datalog ===
521
522 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
523
524 * (((
525 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
526 )))
527 * (((
528 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
529 )))
530
531
532
533 === 2.5.3 Unix TimeStamp ===
534
535
536 DMT01 uses Unix TimeStamp format based on
537
538 [[image:1754354802681-163.jpeg]]
539
540 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
541
542 Below is the converter example
543
544 [[image:1754354818964-624.jpeg]]
545
546
547
548 === 2.5.4 Set Device Time ===
549
550
551 You need to run downlink command 28 01 to enable time synchronization.
552
553 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
554
555 {{info}}
556 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
557 {{/info}}
558
559 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
560
561 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
562 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
563
564
565
566 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
567
568
569 The Datalog uplinks will use below payload format.
570
571 **Retrieval data payload:**
572
573 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
574 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
575 **Size(bytes)**
576 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
577 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
578 Timestamp
579
580
581 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
582 BoxBat
583 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
584 tempData
585
586 Length
587 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
588
589 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
590
591 **Poll Message Flag**: 1: This message is a poll message reply.
592
593 * Poll Message Flag is set to 1.
594
595 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
596
597 For example, in US915 band, the max payload for different DR is:
598
599 **a) DR0:** max is 11 bytes so one entry of data
600
601 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
602
603 **c) DR2:** total payload includes 11 entries of data
604
605 **d) DR3: **total payload includes 22 entries of data.
606
607 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
608
609
610 If user sends below downlink command: 316892FD706893103005
611
612 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
613
614 Stop time: 68931030 = time 25/8/6 08:20:00
615
616
617 DMT01 **will uplink this payload.**
618
619 [[image:1754468836928-459.png]]
620
621 (((
622 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
623
624 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
625 )))
626
627 (((
628 Where the first 55 bytes is for the first entry:
629 )))
630
631 (((
632 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
633 )))
634
635 (((
636 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
637
638 **DevMode** is 0x01 =  BLE_LoRa
639
640 **MACaddr **is 0xC12309250F1A = C12309250F1A
641
642 **ProbeBat **is 0x64 = 100%
643
644 **BoxBat **is 0x3c = 60%
645
646 **Message Type** is 0x40 = POLL_REPLY
647
648 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
649
650 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
651
652 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
653
654 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
655
656 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
657
658 One set of data contains 10 sets of data, and so on...
659 )))
660
661
662 = 3. Configure DMT01  ~-~- 需要修改 =
663
664
665 DMT01 supports below configure method:
666
667 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
668
669
670
671 == 3.1 General Commands ==
672
673 These commands are to configure:
674
675 * General system settings like: uplink interval.
676 * LoRaWAN protocol & radio related command.
677
678 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
679
680 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
681
682 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
683
684
685 (((
686 == 3.2 Downlink Commands Set ==
687
688
689 These commands only valid for DMT01, as below:
690
691 === 3.2.1 Set Transmit Interval Time ===
692
693
694 (% style="color:#037691" %)**AT Command:**
695
696 There is no AT command to set TDC time.
697
698
699 **Feature**: Change LoRaWAN End Node Transmit Interval.
700
701 (% style="color:blue" %)**Downlink Command: 0x01**
702
703 Format: Command Code (0x01) followed by 3 bytes time value.
704
705 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
706
707 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
708 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
709
710
711
712 === 3.2.2 Get Device Status ===
713
714
715 Send a LoRaWAN downlink to request the device's alarm settings.
716
717
718 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
719
720 The sensor will upload device status via FPort=5. See the payload section for details.
721
722
723 === 3.2.3 Clear Flash Record ===
724
725
726 (% style="color:#037691" %)**AT Command:**
727
728 There is no AT command to Clear flash storage for the data log feature
729
730
731 **Feature**: Clear flash storage for the  data log feature.
732
733 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
734
735 * Example: 0x0801  ~/~/ Clears all saved data in flash.
736
737
738
739 === 3.2.4 Confirmed Mode ===
740
741
742 (% style="color:#037691" %)**AT Command:**
743
744 There is no AT command to control whether Confirmed Mode is enabled or disabled.
745
746
747 **Feature**: Mode for sending data that requires acknowledgment.
748
749 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
750
751 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
752 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
753
754
755
756 === 3.2.5 Set the time synchronization interval ===
757
758
759 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
760
761 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
762
763 * Example: 0x28 01  ~/~/ Synchronize once a day
764 * Example: 0x28 03  ~/~/  Synchronize once every three days
765 )))
766
767
768 === 3.2.6  Alarm Mode ===
769
770
771 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
772
773 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
774
775 Format: Command Code (0x09) followed by 4 bytes.
776
777 Example: 09 aa aa bb bb
778
779 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
780 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
781 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
782 Minimum temperature threshold
783
784 (Minimum not to exceed: -30℃)
785 )))
786 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
787 Maximum temperature threshold
788
789 (Maximum not to exceed: 120℃)
790 )))
791
792 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
793 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
794
795 Note:
796
797 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
798 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
799
800
801
802 === 3.2.7 Multi sampling ===
803
804 **Feature**: Sampling multiple times and uplink together.
805
806 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
807
808 Format: Command Code (0x0A) followed by 3 bytes.
809
810 Example: 0A aa aa bb
811
812 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
813 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
814 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
815 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
816
817 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
818
819
820 = 4. Firmware update =
821
822
823 **Firmware download link **(% class="mark" %)(To be updated...)
824
825 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
826
827 * For LoRa part: OTA firmware update via LoRa.
828
829 * For BLE and controller part.
830
831
832
833 == 4.1 Update LoRa software ==
834
835 (% class="wikigeneratedid" %)
836 User can change firmware DMT01 charger to:
837
838 * Change Frequency band/ region.
839 * Update with new features.
840 * Fix bugs.
841
842 (((
843 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
844
845 **Methods to Update Firmware:**
846
847 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
848
849
850 )))
851
852 == 4.2 Update BLE software ==
853
854 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
855
856 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
857
858 [[image:1754547742655-178.png||height="364" width="1057"]]
859
860
861 Step 2: After the phone is installed, open the installed EspbleOTA
862 [[image:1754548807155-607.gif]]
863
864 (% style="color:red" %)**Note:**
865
866 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
867
868 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
869
870
871 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
872
873 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
874
875 [[image:1754555502747-456.gif||height="659" width="297"]]
876
877
878 Step 4: Wait for the update to complete
879
880 [[image:1754555791301-172.jpg||height="618" width="277"]]
881
882
883
884
885 = 5.  FAQ =
886
887
888
889 = 6.  Order Info =
890
891
892 Part Number: (% style="color:blue" %)**DMT01-XX**
893
894 (% style="color:red" %)**XX:**
895
896 * **EU433**: Frequency bands EU433
897 * **EU868**: Frequency bands EU868
898 * **KR920**: Frequency bands KR920
899 * **CN470**: Frequency bands CN470
900 * **AS923**: Frequency bands AS923
901 * **AU915**: Frequency bands AU915
902 * **US915**: Frequency bands US915
903 * **IN865**: Frequency bands IN865
904 * **CN779**: Frequency bands CN779
905
906 = 7. ​ Packing Info =
907
908
909 (% style="color:#037691" %)**Package Includes:**
910
911 * DMT01 -  Digital Meat Thermoneter x 1
912
913 (% style="color:#037691" %)**Dimension and weight:**
914
915 * Device Size: cm
916 * Device Weight: g
917 * Package Size / pcs : cm
918 * Weight / pcs : g
919
920 = 8.  ​Support =
921
922
923 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
924 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].