Wiki source code of DMT01

Version 79.7 by Mengting Qiu on 2025/08/07 16:53

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the time and relay box battery level.
264
265
266
267
268 === 2.3.1 Device Status, FPORT~=5 ===
269
270
271 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
272
273 The Payload format is as below.
274
275 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
276 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
277 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
278 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
279
280 Example in TTN:
281
282 [[image:1754299464263-797.png||height="274" width="1384"]]
283
284
285 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
286
287 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
288
289 (% style="color:#037691" %)**Frequency Band**(%%):
290
291 0x01: EU868
292
293 0x02: US915
294
295 0x03: IN865
296
297 0x04: AU915
298
299 0x05: KZ865
300
301 0x06: RU864
302
303 0x07: AS923
304
305 0x08: AS923-1
306
307 0x09: AS923-2
308
309 0x0a: AS923-3
310
311 0x0b: CN470
312
313 0x0c: EU433
314
315 0x0d: KR920
316
317 0x0e: MA869
318
319 (% style="color:#037691" %)**Sub-Band**(%%):
320
321 AU915 and US915:value 0x00 ~~ 0x08
322
323 CN470: value 0x0B ~~ 0x0C
324
325 Other Bands: Always 0x00
326
327
328 === 2.3.2  Sensor Data. FPORT~=2 ===
329
330
331 Sensor Data is uplink via FPORT=2
332
333 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
334 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
335 **Size(bytes)**
336 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
337 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
338 Timestamp
339
340
341 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
342 BoxBat
343 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
344
345 [[image:1754300947187-648.png||height="641" width="1351"]]
346
347
348
349 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
350
351 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
352
353 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
354
355
356 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
357
358 **Example**:
359
360 If payload is 0x01: BLE_LoRa
361
362 If payload is 0x02: LoRa
363
364 If payload is 0x03: BLE
365
366
367 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
368
369 **Example**:
370
371 If the payload is C12309250F1A, the MACaddr is C12309250F1A
372
373
374 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
375
376 **Example:**
377
378 If payload is 0x64 = 100%
379
380
381 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
382
383 **Example:**
384
385 If payload is 0x46 = 70%
386
387
388 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
389
390 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
391
392 **Example**:
393
394 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
395
396 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
397
398
399 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
400
401 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
402
403 **Example**:
404
405 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
406
407 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
408
409
410
411 == 2.4 Bluetoothe Broadcast Payload ==
412
413 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
414
415 Example:
416
417 Note: The following data is obtained through the **nRF Connect tool**.
418
419 [[image:1754305290140-806.jpg||height="680" width="432"]]
420
421
422 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
423
424 (% style="color:red" %)**Note: **
425
426 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
427 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
428
429 So the payload is:**01C12309250F1AD100CD006446**
430
431
432 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
433
434 Example: 0x0201060609444D5430310EFF
435
436
437 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
438
439 **Example**:
440
441 If payload is 0x01: BLE_LoRa
442
443 If payload is 0x02: LoRa
444
445 If payload is 0x03: BLE
446
447
448 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
449
450 **Example**:
451
452 If the payload is C12309250F1A, the MACaddr is C12309250F1A
453
454
455 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
456
457 **Example:**
458
459 If payload is 0x64 = 100%
460
461
462 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
463
464 **Example:**
465
466 If payload is 0x46 = 70%
467
468
469 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
470
471 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
472
473 **Example**:
474
475 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
476
477 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
478
479
480 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
481
482 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
483
484 **Example**:
485
486 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
487
488 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
489
490
491 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
492
493 Example: 0x0512E001E001
494
495
496
497 == 2.5 Datalog Feature ==
498
499
500 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
501
502
503 === 2.5.1 How datalog works ===
504
505
506 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
507
508 * (((
509 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
510 )))
511 * (((
512 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
513
514
515 )))
516
517 === 2.5.2 Enable Datalog ===
518
519 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
520
521 * (((
522 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
523 )))
524 * (((
525 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
526 )))
527
528
529
530 === 2.5.3 Unix TimeStamp ===
531
532
533 DMT01 uses Unix TimeStamp format based on
534
535 [[image:1754354802681-163.jpeg]]
536
537 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
538
539 Below is the converter example
540
541 [[image:1754354818964-624.jpeg]]
542
543
544
545 === 2.5.4 Set Device Time ===
546
547
548 You need to run downlink command 28 01 to enable time synchronization.
549
550 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
551
552 {{info}}
553 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
554 {{/info}}
555
556 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
557
558 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
559 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
560
561
562
563 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
564
565
566 The Datalog uplinks will use below payload format.
567
568 **Retrieval data payload:**
569
570 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
571 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
572 **Size(bytes)**
573 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
574 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
575 Timestamp
576
577
578 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
579 BoxBat
580 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
581 tempData
582
583 Length
584 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
585
586 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
587
588 **Poll Message Flag**: 1: This message is a poll message reply.
589
590 * Poll Message Flag is set to 1.
591
592 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
593
594 For example, in US915 band, the max payload for different DR is:
595
596 **a) DR0:** max is 11 bytes so one entry of data
597
598 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
599
600 **c) DR2:** total payload includes 11 entries of data
601
602 **d) DR3: **total payload includes 22 entries of data.
603
604 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
605
606
607 If user sends below downlink command: 316892FD706893103005
608
609 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
610
611 Stop time: 68931030 = time 25/8/6 08:20:00
612
613
614 DMT01 **will uplink this payload.**
615
616 [[image:1754468836928-459.png]]
617
618 (((
619 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
620
621 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
622 )))
623
624 (((
625 Where the first 55 bytes is for the first entry:
626 )))
627
628 (((
629 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
630 )))
631
632 (((
633 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
634
635 **DevMode** is 0x01 =  BLE_LoRa
636
637 **MACaddr **is 0xC12309250F1A = C12309250F1A
638
639 **ProbeBat **is 0x64 = 100%
640
641 **BoxBat **is 0x3c = 60%
642
643 **Message Type** is 0x40 = POLL_REPLY
644
645 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
646
647 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
648
649 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
650
651 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
652
653 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
654
655 One set of data contains 10 sets of data, and so on...
656 )))
657
658
659 = 3. Configure DMT01  ~-~- 需要修改 =
660
661
662 DMT01 supports below configure method:
663
664 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
665
666
667
668 == 3.1 General Commands ==
669
670 These commands are to configure:
671
672 * General system settings like: uplink interval.
673 * LoRaWAN protocol & radio related command.
674
675 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
676
677 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
678
679 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
680
681
682 (((
683 == 3.2 Downlink Commands Set ==
684
685
686 These commands only valid for DMT01, as below:
687
688 === 3.2.1 Set Transmit Interval Time ===
689
690
691 (% style="color:#037691" %)**AT Command:**
692
693 There is no AT command to set TDC time.
694
695
696 **Feature**: Change LoRaWAN End Node Transmit Interval.
697
698 (% style="color:blue" %)**Downlink Command: 0x01**
699
700 Format: Command Code (0x01) followed by 3 bytes time value.
701
702 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
703
704 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
705 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
706
707
708
709 === 3.2.2 Get Device Status ===
710
711
712 Send a LoRaWAN downlink to request the device's alarm settings.
713
714
715 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
716
717 The sensor will upload device status via FPort=5. See the payload section for details.
718
719
720 === 3.2.3 Clear Flash Record ===
721
722
723 (% style="color:#037691" %)**AT Command:**
724
725 There is no AT command to Clear flash storage for the data log feature
726
727
728 **Feature**: Clear flash storage for the  data log feature.
729
730 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
731
732 * Example: 0x0801  ~/~/ Clears all saved data in flash.
733
734
735
736 === 3.2.4 Confirmed Mode ===
737
738
739 (% style="color:#037691" %)**AT Command:**
740
741 There is no AT command to control whether Confirmed Mode is enabled or disabled.
742
743
744 **Feature**: Mode for sending data that requires acknowledgment.
745
746 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
747
748 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
749 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
750
751
752
753 === 3.2.5 Set the time synchronization interval ===
754
755
756 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
757
758 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
759
760 * Example: 0x28 01  ~/~/ Synchronize once a day
761 * Example: 0x28 03  ~/~/  Synchronize once every three days
762 )))
763
764
765 === 3.2.6  Alarm Mode ===
766
767
768 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
769
770 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
771
772 Format: Command Code (0x09) followed by 4 bytes.
773
774 Example: 09 aa aa bb bb
775
776 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
778 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
779 Minimum temperature threshold
780
781 (Minimum not to exceed: -30℃)
782 )))
783 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
784 Maximum temperature threshold
785
786 (Maximum not to exceed: 120℃)
787 )))
788
789 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
790 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
791
792 Note:
793
794 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
795 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
796
797
798
799 === 3.2.7 Multi sampling ===
800
801 **Feature**: Sampling multiple times and uplink together.
802
803 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
804
805 Format: Command Code (0x0A) followed by 3 bytes.
806
807 Example: 0A aa aa bb
808
809 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
810 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
811 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
812 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
813
814 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
815
816
817 = 4. Firmware update =
818
819
820 **Firmware download link **(% class="mark" %)(To be updated...)
821
822 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
823
824 * For LoRa part: OTA firmware update via LoRa.
825
826 * For BLE and controller part.
827
828
829
830 == 4.1 Update LoRa software ==
831
832 (% class="wikigeneratedid" %)
833 User can change firmware DMT01 charger to:
834
835 * Change Frequency band/ region.
836 * Update with new features.
837 * Fix bugs.
838
839 (((
840 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
841
842 **Methods to Update Firmware:**
843
844 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
845
846
847 )))
848
849 == 4.2 Update BLE software ==
850
851 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
852
853 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
854
855 [[image:1754547742655-178.png||height="364" width="1057"]]
856
857
858 Step 2: After the phone is installed, open the installed EspbleOTA
859 [[image:1754548807155-607.gif]]
860
861 (% style="color:red" %)**Note:**
862
863 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
864
865 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
866
867
868 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
869
870 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
871
872 [[image:1754555502747-456.gif||height="659" width="297"]]
873
874
875 Step 4: Wait for the update to complete
876
877 [[image:1754555791301-172.jpg||height="618" width="277"]]
878
879
880
881
882 = 5.  FAQ =
883
884
885
886 = 6.  Order Info =
887
888
889 Part Number: (% style="color:blue" %)**DMT01-XX**
890
891 (% style="color:red" %)**XX:**
892
893 * **EU433**: Frequency bands EU433
894 * **EU868**: Frequency bands EU868
895 * **KR920**: Frequency bands KR920
896 * **CN470**: Frequency bands CN470
897 * **AS923**: Frequency bands AS923
898 * **AU915**: Frequency bands AU915
899 * **US915**: Frequency bands US915
900 * **IN865**: Frequency bands IN865
901 * **CN779**: Frequency bands CN779
902
903 = 7. ​ Packing Info =
904
905
906 (% style="color:#037691" %)**Package Includes:**
907
908 * DMT01 -  Digital Meat Thermoneter x 1
909
910 (% style="color:#037691" %)**Dimension and weight:**
911
912 * Device Size: cm
913 * Device Weight: g
914 * Package Size / pcs : cm
915 * Weight / pcs : g
916
917 = 8.  ​Support =
918
919
920 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
921 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].