Wiki source code of DMT01

Version 79.6 by Mengting Qiu on 2025/08/07 16:49

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * Inserting a probe disconnects the probe's Bluetooth and stops Bluetooth data broadcasting. The relay box then charges the probe.
263 * Removing the probe turns on Bluetooth, and the DMT01 searches for and connects to the probe. It then begins uplinking data in LoRaWAN mode. In Bluetooth mode, Bluetooth data broadcasting begins. The relay box then disconnects and charges the probe.
264 * Each time a probe is inserted, removed, or charged, an event packet is sent to the LoRaWAN server. The event packet payload includes the time, time, and relay box battery level.
265
266
267
268
269
270 === 2.3.1 Device Status, FPORT~=5 ===
271
272
273 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
274
275 The Payload format is as below.
276
277 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
278 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
279 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
280 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
281
282 Example in TTN:
283
284 [[image:1754299464263-797.png||height="274" width="1384"]]
285
286
287 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
288
289 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
290
291 (% style="color:#037691" %)**Frequency Band**(%%):
292
293 0x01: EU868
294
295 0x02: US915
296
297 0x03: IN865
298
299 0x04: AU915
300
301 0x05: KZ865
302
303 0x06: RU864
304
305 0x07: AS923
306
307 0x08: AS923-1
308
309 0x09: AS923-2
310
311 0x0a: AS923-3
312
313 0x0b: CN470
314
315 0x0c: EU433
316
317 0x0d: KR920
318
319 0x0e: MA869
320
321 (% style="color:#037691" %)**Sub-Band**(%%):
322
323 AU915 and US915:value 0x00 ~~ 0x08
324
325 CN470: value 0x0B ~~ 0x0C
326
327 Other Bands: Always 0x00
328
329
330 === 2.3.2  Sensor Data. FPORT~=2 ===
331
332
333 Sensor Data is uplink via FPORT=2
334
335 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
336 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
337 **Size(bytes)**
338 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
339 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
340 Timestamp
341
342
343 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
344 BoxBat
345 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
346
347 [[image:1754300947187-648.png||height="641" width="1351"]]
348
349
350
351 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
352
353 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
354
355 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
356
357
358 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
359
360 **Example**:
361
362 If payload is 0x01: BLE_LoRa
363
364 If payload is 0x02: LoRa
365
366 If payload is 0x03: BLE
367
368
369 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
370
371 **Example**:
372
373 If the payload is C12309250F1A, the MACaddr is C12309250F1A
374
375
376 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
377
378 **Example:**
379
380 If payload is 0x64 = 100%
381
382
383 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
384
385 **Example:**
386
387 If payload is 0x46 = 70%
388
389
390 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
391
392 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
393
394 **Example**:
395
396 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
397
398 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
399
400
401 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
402
403 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
404
405 **Example**:
406
407 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
408
409 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
410
411
412
413 == 2.4 Bluetoothe Broadcast Payload ==
414
415 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
416
417 Example:
418
419 Note: The following data is obtained through the **nRF Connect tool**.
420
421 [[image:1754305290140-806.jpg||height="680" width="432"]]
422
423
424 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
425
426 (% style="color:red" %)**Note: **
427
428 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
429 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
430
431 So the payload is:**01C12309250F1AD100CD006446**
432
433
434 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
435
436 Example: 0x0201060609444D5430310EFF
437
438
439 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
440
441 **Example**:
442
443 If payload is 0x01: BLE_LoRa
444
445 If payload is 0x02: LoRa
446
447 If payload is 0x03: BLE
448
449
450 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
451
452 **Example**:
453
454 If the payload is C12309250F1A, the MACaddr is C12309250F1A
455
456
457 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
458
459 **Example:**
460
461 If payload is 0x64 = 100%
462
463
464 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
465
466 **Example:**
467
468 If payload is 0x46 = 70%
469
470
471 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
472
473 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
474
475 **Example**:
476
477 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
478
479 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
480
481
482 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
483
484 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
485
486 **Example**:
487
488 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
489
490 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
491
492
493 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
494
495 Example: 0x0512E001E001
496
497
498
499 == 2.5 Datalog Feature ==
500
501
502 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
503
504
505 === 2.5.1 How datalog works ===
506
507
508 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
509
510 * (((
511 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
512 )))
513 * (((
514 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
515
516
517 )))
518
519 === 2.5.2 Enable Datalog ===
520
521 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
522
523 * (((
524 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
525 )))
526 * (((
527 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
528 )))
529
530
531
532 === 2.5.3 Unix TimeStamp ===
533
534
535 DMT01 uses Unix TimeStamp format based on
536
537 [[image:1754354802681-163.jpeg]]
538
539 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
540
541 Below is the converter example
542
543 [[image:1754354818964-624.jpeg]]
544
545
546
547 === 2.5.4 Set Device Time ===
548
549
550 You need to run downlink command 28 01 to enable time synchronization.
551
552 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
553
554 {{info}}
555 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
556 {{/info}}
557
558 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
559
560 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
561 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
562
563
564
565 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
566
567
568 The Datalog uplinks will use below payload format.
569
570 **Retrieval data payload:**
571
572 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
573 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
574 **Size(bytes)**
575 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
576 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
577 Timestamp
578
579
580 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
581 BoxBat
582 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
583 tempData
584
585 Length
586 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
587
588 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
589
590 **Poll Message Flag**: 1: This message is a poll message reply.
591
592 * Poll Message Flag is set to 1.
593
594 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
595
596 For example, in US915 band, the max payload for different DR is:
597
598 **a) DR0:** max is 11 bytes so one entry of data
599
600 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
601
602 **c) DR2:** total payload includes 11 entries of data
603
604 **d) DR3: **total payload includes 22 entries of data.
605
606 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
607
608
609 If user sends below downlink command: 316892FD706893103005
610
611 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
612
613 Stop time: 68931030 = time 25/8/6 08:20:00
614
615
616 DMT01 **will uplink this payload.**
617
618 [[image:1754468836928-459.png]]
619
620 (((
621 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
622
623 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
624 )))
625
626 (((
627 Where the first 55 bytes is for the first entry:
628 )))
629
630 (((
631 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
632 )))
633
634 (((
635 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
636
637 **DevMode** is 0x01 =  BLE_LoRa
638
639 **MACaddr **is 0xC12309250F1A = C12309250F1A
640
641 **ProbeBat **is 0x64 = 100%
642
643 **BoxBat **is 0x3c = 60%
644
645 **Message Type** is 0x40 = POLL_REPLY
646
647 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
648
649 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
650
651 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
652
653 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
654
655 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
656
657 One set of data contains 10 sets of data, and so on...
658 )))
659
660
661 = 3. Configure DMT01  ~-~- 需要修改 =
662
663
664 DMT01 supports below configure method:
665
666 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
667
668
669
670 == 3.1 General Commands ==
671
672 These commands are to configure:
673
674 * General system settings like: uplink interval.
675 * LoRaWAN protocol & radio related command.
676
677 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
678
679 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
680
681 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
682
683
684 (((
685 == 3.2 Downlink Commands Set ==
686
687
688 These commands only valid for DMT01, as below:
689
690 === 3.2.1 Set Transmit Interval Time ===
691
692
693 (% style="color:#037691" %)**AT Command:**
694
695 There is no AT command to set TDC time.
696
697
698 **Feature**: Change LoRaWAN End Node Transmit Interval.
699
700 (% style="color:blue" %)**Downlink Command: 0x01**
701
702 Format: Command Code (0x01) followed by 3 bytes time value.
703
704 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
705
706 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
707 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
708
709
710
711 === 3.2.2 Get Device Status ===
712
713
714 Send a LoRaWAN downlink to request the device's alarm settings.
715
716
717 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
718
719 The sensor will upload device status via FPort=5. See the payload section for details.
720
721
722 === 3.2.3 Clear Flash Record ===
723
724
725 (% style="color:#037691" %)**AT Command:**
726
727 There is no AT command to Clear flash storage for the data log feature
728
729
730 **Feature**: Clear flash storage for the  data log feature.
731
732 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
733
734 * Example: 0x0801  ~/~/ Clears all saved data in flash.
735
736
737
738 === 3.2.4 Confirmed Mode ===
739
740
741 (% style="color:#037691" %)**AT Command:**
742
743 There is no AT command to control whether Confirmed Mode is enabled or disabled.
744
745
746 **Feature**: Mode for sending data that requires acknowledgment.
747
748 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
749
750 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
751 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
752
753
754
755 === 3.2.5 Set the time synchronization interval ===
756
757
758 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
759
760 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
761
762 * Example: 0x28 01  ~/~/ Synchronize once a day
763 * Example: 0x28 03  ~/~/  Synchronize once every three days
764 )))
765
766
767 === 3.2.6  Alarm Mode ===
768
769
770 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
771
772 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
773
774 Format: Command Code (0x09) followed by 4 bytes.
775
776 Example: 09 aa aa bb bb
777
778 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
779 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
780 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
781 Minimum temperature threshold
782
783 (Minimum not to exceed: -30℃)
784 )))
785 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
786 Maximum temperature threshold
787
788 (Maximum not to exceed: 120℃)
789 )))
790
791 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
792 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
793
794 Note:
795
796 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
797 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
798
799
800
801 === 3.2.7 Multi sampling ===
802
803 **Feature**: Sampling multiple times and uplink together.
804
805 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
806
807 Format: Command Code (0x0A) followed by 3 bytes.
808
809 Example: 0A aa aa bb
810
811 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
812 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
813 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
814 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
815
816 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
817
818
819 = 4. Firmware update =
820
821
822 **Firmware download link **(% class="mark" %)(To be updated...)
823
824 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
825
826 * For LoRa part: OTA firmware update via LoRa.
827
828 * For BLE and controller part.
829
830
831
832 == 4.1 Update LoRa software ==
833
834 (% class="wikigeneratedid" %)
835 User can change firmware DMT01 charger to:
836
837 * Change Frequency band/ region.
838 * Update with new features.
839 * Fix bugs.
840
841 (((
842 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
843
844 **Methods to Update Firmware:**
845
846 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
847
848
849 )))
850
851 == 4.2 Update BLE software ==
852
853 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
854
855 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
856
857 [[image:1754547742655-178.png||height="364" width="1057"]]
858
859
860 Step 2: After the phone is installed, open the installed EspbleOTA
861 [[image:1754548807155-607.gif]]
862
863 (% style="color:red" %)**Note:**
864
865 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
866
867 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
868
869
870 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
871
872 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
873
874 [[image:1754555502747-456.gif||height="659" width="297"]]
875
876
877 Step 4: Wait for the update to complete
878
879 [[image:1754555791301-172.jpg||height="618" width="277"]]
880
881
882
883
884 = 5.  FAQ =
885
886
887
888 = 6.  Order Info =
889
890
891 Part Number: (% style="color:blue" %)**DMT01-XX**
892
893 (% style="color:red" %)**XX:**
894
895 * **EU433**: Frequency bands EU433
896 * **EU868**: Frequency bands EU868
897 * **KR920**: Frequency bands KR920
898 * **CN470**: Frequency bands CN470
899 * **AS923**: Frequency bands AS923
900 * **AU915**: Frequency bands AU915
901 * **US915**: Frequency bands US915
902 * **IN865**: Frequency bands IN865
903 * **CN779**: Frequency bands CN779
904
905 = 7. ​ Packing Info =
906
907
908 (% style="color:#037691" %)**Package Includes:**
909
910 * DMT01 -  Digital Meat Thermoneter x 1
911
912 (% style="color:#037691" %)**Dimension and weight:**
913
914 * Device Size: cm
915 * Device Weight: g
916 * Package Size / pcs : cm
917 * Weight / pcs : g
918
919 = 8.  ​Support =
920
921
922 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
923 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].