Wiki source code of DMT01

Version 79.10 by Mengting Qiu on 2025/08/07 16:57

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 * When the probe is placed in or removed from the relay box, or when Bluetooth charging is complete, an event packet is sent uplink to the LoRaWan server.
263 * The payload includes the** Timestamp, ProbeEvent and relay box battery level**.
264
265 The Payload format is as below:
266
267 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
268 |(% colspan="5" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=6)**
269 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**4**|(% style="width:98px" %)**1**|(% style="width:103px" %)**1**
270 |(% style="width:103px" %)Value|(% style="width:91px" %)Timestamp|(% style="width:98px" %)ProbeEvent|(% style="width:103px" %)relay box battery level
271
272 Example in TTN:
273
274
275
276
277 === 2.3.1 Device Status, FPORT~=5 ===
278
279
280 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
281
282 The Payload format is as below.
283
284 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
285 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
286 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
287 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
288
289 Example in TTN:
290
291 [[image:1754299464263-797.png||height="274" width="1384"]]
292
293
294 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
295
296 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
297
298 (% style="color:#037691" %)**Frequency Band**(%%):
299
300 0x01: EU868
301
302 0x02: US915
303
304 0x03: IN865
305
306 0x04: AU915
307
308 0x05: KZ865
309
310 0x06: RU864
311
312 0x07: AS923
313
314 0x08: AS923-1
315
316 0x09: AS923-2
317
318 0x0a: AS923-3
319
320 0x0b: CN470
321
322 0x0c: EU433
323
324 0x0d: KR920
325
326 0x0e: MA869
327
328 (% style="color:#037691" %)**Sub-Band**(%%):
329
330 AU915 and US915:value 0x00 ~~ 0x08
331
332 CN470: value 0x0B ~~ 0x0C
333
334 Other Bands: Always 0x00
335
336
337 === 2.3.2  Sensor Data. FPORT~=2 ===
338
339
340 Sensor Data is uplink via FPORT=2
341
342 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
343 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
344 **Size(bytes)**
345 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
346 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
347 Timestamp
348
349
350 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
351 BoxBat
352 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
353
354 [[image:1754300947187-648.png||height="641" width="1351"]]
355
356
357
358 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
359
360 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
361
362 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
363
364
365 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
366
367 **Example**:
368
369 If payload is 0x01: BLE_LoRa
370
371 If payload is 0x02: LoRa
372
373 If payload is 0x03: BLE
374
375
376 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
377
378 **Example**:
379
380 If the payload is C12309250F1A, the MACaddr is C12309250F1A
381
382
383 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
384
385 **Example:**
386
387 If payload is 0x64 = 100%
388
389
390 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
391
392 **Example:**
393
394 If payload is 0x46 = 70%
395
396
397 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
398
399 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
400
401 **Example**:
402
403 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
404
405 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
406
407
408 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
409
410 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
411
412 **Example**:
413
414 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
415
416 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
417
418
419
420 == 2.4 Bluetoothe Broadcast Payload ==
421
422 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
423
424 Example:
425
426 Note: The following data is obtained through the **nRF Connect tool**.
427
428 [[image:1754305290140-806.jpg||height="680" width="432"]]
429
430
431 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
432
433 (% style="color:red" %)**Note: **
434
435 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
436 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
437
438 So the payload is:**01C12309250F1AD100CD006446**
439
440
441 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
442
443 Example: 0x0201060609444D5430310EFF
444
445
446 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
447
448 **Example**:
449
450 If payload is 0x01: BLE_LoRa
451
452 If payload is 0x02: LoRa
453
454 If payload is 0x03: BLE
455
456
457 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
458
459 **Example**:
460
461 If the payload is C12309250F1A, the MACaddr is C12309250F1A
462
463
464 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
465
466 **Example:**
467
468 If payload is 0x64 = 100%
469
470
471 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
472
473 **Example:**
474
475 If payload is 0x46 = 70%
476
477
478 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
479
480 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
481
482 **Example**:
483
484 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
485
486 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
487
488
489 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
490
491 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
492
493 **Example**:
494
495 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
496
497 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
498
499
500 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
501
502 Example: 0x0512E001E001
503
504
505
506 == 2.5 Datalog Feature ==
507
508
509 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
510
511
512 === 2.5.1 How datalog works ===
513
514
515 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
516
517 * (((
518 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
519 )))
520 * (((
521 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
522
523
524 )))
525
526 === 2.5.2 Enable Datalog ===
527
528 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
529
530 * (((
531 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
532 )))
533 * (((
534 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
535 )))
536
537
538
539 === 2.5.3 Unix TimeStamp ===
540
541
542 DMT01 uses Unix TimeStamp format based on
543
544 [[image:1754354802681-163.jpeg]]
545
546 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
547
548 Below is the converter example
549
550 [[image:1754354818964-624.jpeg]]
551
552
553
554 === 2.5.4 Set Device Time ===
555
556
557 You need to run downlink command 28 01 to enable time synchronization.
558
559 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
560
561 {{info}}
562 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
563 {{/info}}
564
565 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
566
567 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
568 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
569
570
571
572 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
573
574
575 The Datalog uplinks will use below payload format.
576
577 **Retrieval data payload:**
578
579 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
580 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
581 **Size(bytes)**
582 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
583 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
584 Timestamp
585
586
587 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
588 BoxBat
589 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
590 tempData
591
592 Length
593 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
594
595 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
596
597 **Poll Message Flag**: 1: This message is a poll message reply.
598
599 * Poll Message Flag is set to 1.
600
601 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
602
603 For example, in US915 band, the max payload for different DR is:
604
605 **a) DR0:** max is 11 bytes so one entry of data
606
607 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
608
609 **c) DR2:** total payload includes 11 entries of data
610
611 **d) DR3: **total payload includes 22 entries of data.
612
613 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
614
615
616 If user sends below downlink command: 316892FD706893103005
617
618 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
619
620 Stop time: 68931030 = time 25/8/6 08:20:00
621
622
623 DMT01 **will uplink this payload.**
624
625 [[image:1754468836928-459.png]]
626
627 (((
628 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
629
630 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
631 )))
632
633 (((
634 Where the first 55 bytes is for the first entry:
635 )))
636
637 (((
638 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
639 )))
640
641 (((
642 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
643
644 **DevMode** is 0x01 =  BLE_LoRa
645
646 **MACaddr **is 0xC12309250F1A = C12309250F1A
647
648 **ProbeBat **is 0x64 = 100%
649
650 **BoxBat **is 0x3c = 60%
651
652 **Message Type** is 0x40 = POLL_REPLY
653
654 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
655
656 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
657
658 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
659
660 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
661
662 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
663
664 One set of data contains 10 sets of data, and so on...
665 )))
666
667
668 = 3. Configure DMT01  ~-~- 需要修改 =
669
670
671 DMT01 supports below configure method:
672
673 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
674
675
676
677 == 3.1 General Commands ==
678
679 These commands are to configure:
680
681 * General system settings like: uplink interval.
682 * LoRaWAN protocol & radio related command.
683
684 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
685
686 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
687
688 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
689
690
691 (((
692 == 3.2 Downlink Commands Set ==
693
694
695 These commands only valid for DMT01, as below:
696
697 === 3.2.1 Set Transmit Interval Time ===
698
699
700 (% style="color:#037691" %)**AT Command:**
701
702 There is no AT command to set TDC time.
703
704
705 **Feature**: Change LoRaWAN End Node Transmit Interval.
706
707 (% style="color:blue" %)**Downlink Command: 0x01**
708
709 Format: Command Code (0x01) followed by 3 bytes time value.
710
711 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
712
713 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
714 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
715
716
717
718 === 3.2.2 Get Device Status ===
719
720
721 Send a LoRaWAN downlink to request the device's alarm settings.
722
723
724 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
725
726 The sensor will upload device status via FPort=5. See the payload section for details.
727
728
729 === 3.2.3 Clear Flash Record ===
730
731
732 (% style="color:#037691" %)**AT Command:**
733
734 There is no AT command to Clear flash storage for the data log feature
735
736
737 **Feature**: Clear flash storage for the  data log feature.
738
739 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
740
741 * Example: 0x0801  ~/~/ Clears all saved data in flash.
742
743
744
745 === 3.2.4 Confirmed Mode ===
746
747
748 (% style="color:#037691" %)**AT Command:**
749
750 There is no AT command to control whether Confirmed Mode is enabled or disabled.
751
752
753 **Feature**: Mode for sending data that requires acknowledgment.
754
755 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
756
757 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
758 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
759
760
761
762 === 3.2.5 Set the time synchronization interval ===
763
764
765 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
766
767 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
768
769 * Example: 0x28 01  ~/~/ Synchronize once a day
770 * Example: 0x28 03  ~/~/  Synchronize once every three days
771 )))
772
773
774 === 3.2.6  Alarm Mode ===
775
776
777 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
778
779 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
780
781 Format: Command Code (0x09) followed by 4 bytes.
782
783 Example: 09 aa aa bb bb
784
785 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
786 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
787 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
788 Minimum temperature threshold
789
790 (Minimum not to exceed: -30℃)
791 )))
792 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
793 Maximum temperature threshold
794
795 (Maximum not to exceed: 120℃)
796 )))
797
798 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
799 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
800
801 Note:
802
803 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
804 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
805
806
807
808 === 3.2.7 Multi sampling ===
809
810 **Feature**: Sampling multiple times and uplink together.
811
812 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
813
814 Format: Command Code (0x0A) followed by 3 bytes.
815
816 Example: 0A aa aa bb
817
818 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
819 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
820 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
821 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
822
823 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
824
825
826 = 4. Firmware update =
827
828
829 **Firmware download link **(% class="mark" %)(To be updated...)
830
831 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
832
833 * For LoRa part: OTA firmware update via LoRa.
834
835 * For BLE and controller part.
836
837
838
839 == 4.1 Update LoRa software ==
840
841 (% class="wikigeneratedid" %)
842 User can change firmware DMT01 charger to:
843
844 * Change Frequency band/ region.
845 * Update with new features.
846 * Fix bugs.
847
848 (((
849 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
850
851 **Methods to Update Firmware:**
852
853 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
854
855
856 )))
857
858 == 4.2 Update BLE software ==
859
860 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
861
862 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
863
864 [[image:1754547742655-178.png||height="364" width="1057"]]
865
866
867 Step 2: After the phone is installed, open the installed EspbleOTA
868 [[image:1754548807155-607.gif]]
869
870 (% style="color:red" %)**Note:**
871
872 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
873
874 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
875
876
877 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
878
879 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
880
881 [[image:1754555502747-456.gif||height="659" width="297"]]
882
883
884 Step 4: Wait for the update to complete
885
886 [[image:1754555791301-172.jpg||height="618" width="277"]]
887
888
889
890
891 = 5.  FAQ =
892
893
894
895 = 6.  Order Info =
896
897
898 Part Number: (% style="color:blue" %)**DMT01-XX**
899
900 (% style="color:red" %)**XX:**
901
902 * **EU433**: Frequency bands EU433
903 * **EU868**: Frequency bands EU868
904 * **KR920**: Frequency bands KR920
905 * **CN470**: Frequency bands CN470
906 * **AS923**: Frequency bands AS923
907 * **AU915**: Frequency bands AU915
908 * **US915**: Frequency bands US915
909 * **IN865**: Frequency bands IN865
910 * **CN779**: Frequency bands CN779
911
912 = 7. ​ Packing Info =
913
914
915 (% style="color:#037691" %)**Package Includes:**
916
917 * DMT01 -  Digital Meat Thermoneter x 1
918
919 (% style="color:#037691" %)**Dimension and weight:**
920
921 * Device Size: cm
922 * Device Weight: g
923 * Package Size / pcs : cm
924 * Weight / pcs : g
925
926 = 8.  ​Support =
927
928
929 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
930 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].