Wiki source code of DMT01

Version 57.2 by Mengting Qiu on 2025/08/05 08:48

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257 === 2.3.1 Device Status, FPORT~=5 ===
258
259
260 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
261
262 The Payload format is as below.
263
264 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
265 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
266 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
267 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
268
269 Example in TTN:
270
271 [[image:1754299464263-797.png||height="274" width="1384"]]
272
273
274 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
275
276 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
277
278 (% style="color:#037691" %)**Frequency Band**(%%):
279
280 0x01: EU868
281
282 0x02: US915
283
284 0x03: IN865
285
286 0x04: AU915
287
288 0x05: KZ865
289
290 0x06: RU864
291
292 0x07: AS923
293
294 0x08: AS923-1
295
296 0x09: AS923-2
297
298 0x0a: AS923-3
299
300 0x0b: CN470
301
302 0x0c: EU433
303
304 0x0d: KR920
305
306 0x0e: MA869
307
308 (% style="color:#037691" %)**Sub-Band**(%%):
309
310 AU915 and US915:value 0x00 ~~ 0x08
311
312 CN470: value 0x0B ~~ 0x0C
313
314 Other Bands: Always 0x00
315
316
317 === 2.3.2  Sensor Data. FPORT~=2 ===
318
319
320 Sensor Data is uplink via FPORT=2
321
322 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
323 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
324 **Size(bytes)**
325 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
326 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
327 Timestamp
328
329
330 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
331 BoxBat
332 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
333
334 [[image:1754300947187-648.png||height="641" width="1351"]]
335
336
337
338 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
339
340 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
341
342 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
343
344
345 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
346
347 **Example**:
348
349 If payload is 0x01: BLE_LoRa
350
351 If payload is 0x02: LoRa
352
353 If payload is 0x03: BLE
354
355
356 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
357
358 **Example**:
359
360 If the payload is C12309250F1A, the MACaddr is C12309250F1A
361
362
363 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
364
365 **Example:**
366
367 If payload is 0x64 = 100%
368
369
370 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
371
372 **Example:**
373
374 If payload is 0x46 = 70%
375
376
377 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
378
379 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
380
381 **Example**:
382
383 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
384
385 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
386
387
388 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
389
390 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
391
392 **Example**:
393
394 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
395
396 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
397
398
399
400 == 2.4 Bluetoothe Broadcast Payload ==
401
402 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
403
404 Example:
405
406 Note: The following data is obtained through the **nRF Connect tool**.
407
408 [[image:1754305290140-806.jpg||height="680" width="432"]]
409
410
411 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
412
413 (% style="color:red" %)**Note**(%%):
414
415 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
416 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
417
418 So the payload is:**01C12309250F1AD100CD006446**
419
420
421 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
422
423 Example: 0x0201060609444D5430310EFF
424
425
426 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
427
428 **Example**:
429
430 If payload is 0x01: BLE_LoRa
431
432 If payload is 0x02: LoRa
433
434 If payload is 0x03: BLE
435
436
437 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
438
439 **Example**:
440
441 If the payload is C12309250F1A, the MACaddr is C12309250F1A
442
443
444 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
445
446 **Example:**
447
448 If payload is 0x64 = 100%
449
450
451 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
452
453 **Example:**
454
455 If payload is 0x46 = 70%
456
457
458 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
459
460 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
461
462 **Example**:
463
464 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
465
466 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
467
468
469 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
470
471 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
472
473 **Example**:
474
475 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
476
477 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
478
479
480 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
481
482 Example: 0x0512E001E001
483
484
485
486 == 2.5 Datalog Feature ==
487
488
489 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
490
491
492 === 2.5.1 How datalog works ===
493
494
495 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
496
497 * (((
498 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
499 )))
500 * (((
501 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
502
503
504 )))
505
506 === 2.5.2 Enable Datalog ===
507
508 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
509
510 * (((
511 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
512 )))
513 * (((
514 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
515 )))
516
517
518
519 === 2.5.3 Unix TimeStamp ===
520
521
522 DMT01 uses Unix TimeStamp format based on
523
524 [[image:1754354802681-163.jpeg]]
525
526 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
527
528 Below is the converter example
529
530 [[image:1754354818964-624.jpeg]]
531
532
533
534 === 2.5.4 Set Device Time ===
535
536
537 You need to run downlink command 28 01 to enable time synchronization.
538
539 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
540
541 {{info}}
542 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
543 {{/info}}
544
545 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
546
547 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
548 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
549
550 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
551
552
553 The Datalog uplinks will use below payload format.
554
555 **Retrieval data payload:**
556
557 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
558 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
559 **Size(bytes)**
560 )))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 65px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px; background-color:#4F81BD;color:white" %)**1**|=(% style="width: 100px; background-color:#4F81BD;color:white" %)**4**
561 |(% style="width:103px" %)Value|(% style="width:68px" %)(((
562 ignore
563 )))|(% style="width:104px" %)(((
564 (((
565 Humidity
566 )))
567 )))|(% style="width:87px" %)(((
568 Temperature
569 )))|(% style="width:178px" %)(((
570 Poll message flag & Alarm Flag& Level of PA8
571 )))|(% style="width:137px" %)Unix Time Stamp
572
573 **Poll message flag & Alarm Flag & Level of PA8:**
574
575 [[image:image-20230524114302-1.png||height="115" width="736"]]
576
577
578 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
579
580 **Poll Message Flag**: 1: This message is a poll message reply.
581
582 * Poll Message Flag is set to 1.
583
584 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
585
586 For example, in US915 band, the max payload for different DR is:
587
588 **a) DR0:** max is 11 bytes so one entry of data
589
590 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
591
592 **c) DR2:** total payload includes 11 entries of data
593
594 **d) DR3: **total payload includes 22 entries of data.
595
596 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
597
598 **Example:**
599
600 If DMT01 has below data inside Flash:
601
602 [[image:image-20230524114654-2.png]]
603
604
605 If user sends below downlink command: 31646D84E1646D856C05
606
607 Where : Start time: 646D84E1 = time 23/5/24 03:30:41
608
609 Stop time: 646D856C= time 23/5/24 03:33:00
610
611
612 DMT01 **will uplink this payload.**
613
614 [[image:image-20230524114826-3.png||height="448" width="1244"]]
615
616 (((
617 00 00 02 36 01 10 40 64 6D 84 E1 00 00 02 37 01 10 40 64 6D 84 F8 00 00 02 37 01 0F 40 64 6D 85 04 00 00 02 3A 01 0F 40 64 6D 85 18 00 00 02 3C 01 0F 40 64 6D 85 36 00 00 02 3D 01 0E 40 64 6D 85 3F 00 00 02 3F 01 0E 40 64 6D 85 60 00 00 02 40 01 0E 40 64 6D 85 6A
618 )))
619
620 (((
621 Where the first 11 bytes is for the first entry:
622 )))
623
624 (((
625 00 00 02 36 01 10 40 64 6D 84 E1
626 )))
627
628 (((
629 **Hum**=0x0236/10=56.6
630 )))
631
632 (((
633 **Temp**=0x0110/10=27.2
634 )))
635
636 (((
637 **poll message flag & Alarm Flag & Level of PA8**=0x40,means reply data,sampling uplink message,the PA8 is low level.
638 )))
639
640 (((
641 **Unix time** is 0x646D84E1=1684899041s=23/5/24 03:30:41
642 )))
643
644
645
646
647 = 3. Configure DMT01  ~-~- 需要修改 =
648
649 == 3.1 Configure Methods ==
650
651 User can use LoRaWAN downlink command to configure the DMT01
652
653 (((
654 (((
655 == 3.2 Downlink Commands Set ==
656
657
658 (% class="box infomessage" %)
659 (((
660 To be updated...
661 )))
662 )))
663 )))
664
665
666 = 4. Firmware update =
667
668
669 **Firmware download link **(% class="mark" %)(To be updated...)
670
671 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
672
673 * For LoRa part: OTA firmware update via LoRa:.
674
675 * For BLE and controller part.
676
677 == 4.1 Update LoRa software ==
678
679
680 == 4.2 Update BLE software ==
681
682
683 (((
684
685 )))
686
687 = 5.  FAQ =
688
689
690
691 = 6.  Order Info =
692
693
694 Part Number: (% style="color:blue" %)**DMT01-XX**
695
696 (% style="color:red" %)**XX:**
697
698 * **EU433**: Frequency bands EU433
699 * **EU868**: Frequency bands EU868
700 * **KR920**: Frequency bands KR920
701 * **CN470**: Frequency bands CN470
702 * **AS923**: Frequency bands AS923
703 * **AU915**: Frequency bands AU915
704 * **US915**: Frequency bands US915
705 * **IN865**: Frequency bands IN865
706 * **CN779**: Frequency bands CN779
707
708 = 7. ​ Packing Info =
709
710
711 (% style="color:#037691" %)**Package Includes:**
712
713 * DMT01 -  Digital Meat Thermoneter x 1
714
715 (% style="color:#037691" %)**Dimension and weight:**
716
717 * Device Size: cm
718 * Device Weight: g
719 * Package Size / pcs : cm
720 * Weight / pcs : g
721
722 = 8.  ​Support =
723
724
725 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
726 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].