Wiki source code of DMT01

Version 79.3 by Mengting Qiu on 2025/08/07 16:46

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262 ~1. Inserting a probe disconnects the probe's Bluetooth and stops Bluetooth data broadcasting. The relay box then charges the probe.
263 2. Removing the probe turns on Bluetooth, searches for the probe, connects, and begins uplinking data in LoRaWAN mode. In Bluetooth mode, Bluetooth data broadcasting begins. The relay box then disconnects and charges the probe.
264 3. Each time a probe is inserted, removed, or charged, an event packet is sent to the LoRaWAN server. The event packet payload includes the time, time, and relay box battery level.
265
266
267
268
269 === 2.3.1 Device Status, FPORT~=5 ===
270
271
272 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
273
274 The Payload format is as below.
275
276 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
277 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
278 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
279 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
280
281 Example in TTN:
282
283 [[image:1754299464263-797.png||height="274" width="1384"]]
284
285
286 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
287
288 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
289
290 (% style="color:#037691" %)**Frequency Band**(%%):
291
292 0x01: EU868
293
294 0x02: US915
295
296 0x03: IN865
297
298 0x04: AU915
299
300 0x05: KZ865
301
302 0x06: RU864
303
304 0x07: AS923
305
306 0x08: AS923-1
307
308 0x09: AS923-2
309
310 0x0a: AS923-3
311
312 0x0b: CN470
313
314 0x0c: EU433
315
316 0x0d: KR920
317
318 0x0e: MA869
319
320 (% style="color:#037691" %)**Sub-Band**(%%):
321
322 AU915 and US915:value 0x00 ~~ 0x08
323
324 CN470: value 0x0B ~~ 0x0C
325
326 Other Bands: Always 0x00
327
328
329 === 2.3.2  Sensor Data. FPORT~=2 ===
330
331
332 Sensor Data is uplink via FPORT=2
333
334 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
335 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
336 **Size(bytes)**
337 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
338 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
339 Timestamp
340
341
342 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
343 BoxBat
344 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
345
346 [[image:1754300947187-648.png||height="641" width="1351"]]
347
348
349
350 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
351
352 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
353
354 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
355
356
357 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
358
359 **Example**:
360
361 If payload is 0x01: BLE_LoRa
362
363 If payload is 0x02: LoRa
364
365 If payload is 0x03: BLE
366
367
368 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
369
370 **Example**:
371
372 If the payload is C12309250F1A, the MACaddr is C12309250F1A
373
374
375 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
376
377 **Example:**
378
379 If payload is 0x64 = 100%
380
381
382 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
383
384 **Example:**
385
386 If payload is 0x46 = 70%
387
388
389 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
390
391 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
392
393 **Example**:
394
395 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
396
397 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
398
399
400 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
401
402 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
403
404 **Example**:
405
406 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
407
408 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
409
410
411
412 == 2.4 Bluetoothe Broadcast Payload ==
413
414 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
415
416 Example:
417
418 Note: The following data is obtained through the **nRF Connect tool**.
419
420 [[image:1754305290140-806.jpg||height="680" width="432"]]
421
422
423 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
424
425 (% style="color:red" %)**Note: **
426
427 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
428 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
429
430 So the payload is:**01C12309250F1AD100CD006446**
431
432
433 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
434
435 Example: 0x0201060609444D5430310EFF
436
437
438 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
439
440 **Example**:
441
442 If payload is 0x01: BLE_LoRa
443
444 If payload is 0x02: LoRa
445
446 If payload is 0x03: BLE
447
448
449 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
450
451 **Example**:
452
453 If the payload is C12309250F1A, the MACaddr is C12309250F1A
454
455
456 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
457
458 **Example:**
459
460 If payload is 0x64 = 100%
461
462
463 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
464
465 **Example:**
466
467 If payload is 0x46 = 70%
468
469
470 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
471
472 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
473
474 **Example**:
475
476 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
477
478 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
479
480
481 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
482
483 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
484
485 **Example**:
486
487 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
488
489 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
490
491
492 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
493
494 Example: 0x0512E001E001
495
496
497
498 == 2.5 Datalog Feature ==
499
500
501 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
502
503
504 === 2.5.1 How datalog works ===
505
506
507 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
508
509 * (((
510 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
511 )))
512 * (((
513 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
514
515
516 )))
517
518 === 2.5.2 Enable Datalog ===
519
520 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
521
522 * (((
523 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
524 )))
525 * (((
526 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
527 )))
528
529
530
531 === 2.5.3 Unix TimeStamp ===
532
533
534 DMT01 uses Unix TimeStamp format based on
535
536 [[image:1754354802681-163.jpeg]]
537
538 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
539
540 Below is the converter example
541
542 [[image:1754354818964-624.jpeg]]
543
544
545
546 === 2.5.4 Set Device Time ===
547
548
549 You need to run downlink command 28 01 to enable time synchronization.
550
551 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
552
553 {{info}}
554 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
555 {{/info}}
556
557 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
558
559 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
560 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
561
562
563
564 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
565
566
567 The Datalog uplinks will use below payload format.
568
569 **Retrieval data payload:**
570
571 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
572 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
573 **Size(bytes)**
574 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
575 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
576 Timestamp
577
578
579 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
580 BoxBat
581 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
582 tempData
583
584 Length
585 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
586
587 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
588
589 **Poll Message Flag**: 1: This message is a poll message reply.
590
591 * Poll Message Flag is set to 1.
592
593 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
594
595 For example, in US915 band, the max payload for different DR is:
596
597 **a) DR0:** max is 11 bytes so one entry of data
598
599 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
600
601 **c) DR2:** total payload includes 11 entries of data
602
603 **d) DR3: **total payload includes 22 entries of data.
604
605 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
606
607
608 If user sends below downlink command: 316892FD706893103005
609
610 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
611
612 Stop time: 68931030 = time 25/8/6 08:20:00
613
614
615 DMT01 **will uplink this payload.**
616
617 [[image:1754468836928-459.png]]
618
619 (((
620 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
621
622 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
623 )))
624
625 (((
626 Where the first 55 bytes is for the first entry:
627 )))
628
629 (((
630 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
631 )))
632
633 (((
634 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
635
636 **DevMode** is 0x01 =  BLE_LoRa
637
638 **MACaddr **is 0xC12309250F1A = C12309250F1A
639
640 **ProbeBat **is 0x64 = 100%
641
642 **BoxBat **is 0x3c = 60%
643
644 **Message Type** is 0x40 = POLL_REPLY
645
646 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
647
648 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
649
650 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
651
652 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
653
654 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
655
656 One set of data contains 10 sets of data, and so on...
657 )))
658
659
660 = 3. Configure DMT01  ~-~- 需要修改 =
661
662
663 DMT01 supports below configure method:
664
665 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
666
667
668
669 == 3.1 General Commands ==
670
671 These commands are to configure:
672
673 * General system settings like: uplink interval.
674 * LoRaWAN protocol & radio related command.
675
676 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
677
678 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
679
680 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
681
682
683 (((
684 == 3.2 Downlink Commands Set ==
685
686
687 These commands only valid for DMT01, as below:
688
689 === 3.2.1 Set Transmit Interval Time ===
690
691
692 (% style="color:#037691" %)**AT Command:**
693
694 There is no AT command to set TDC time.
695
696
697 **Feature**: Change LoRaWAN End Node Transmit Interval.
698
699 (% style="color:blue" %)**Downlink Command: 0x01**
700
701 Format: Command Code (0x01) followed by 3 bytes time value.
702
703 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
704
705 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
706 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
707
708
709
710 === 3.2.2 Get Device Status ===
711
712
713 Send a LoRaWAN downlink to request the device's alarm settings.
714
715
716 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
717
718 The sensor will upload device status via FPort=5. See the payload section for details.
719
720
721 === 3.2.3 Clear Flash Record ===
722
723
724 (% style="color:#037691" %)**AT Command:**
725
726 There is no AT command to Clear flash storage for the data log feature
727
728
729 **Feature**: Clear flash storage for the  data log feature.
730
731 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
732
733 * Example: 0x0801  ~/~/ Clears all saved data in flash.
734
735
736
737 === 3.2.4 Confirmed Mode ===
738
739
740 (% style="color:#037691" %)**AT Command:**
741
742 There is no AT command to control whether Confirmed Mode is enabled or disabled.
743
744
745 **Feature**: Mode for sending data that requires acknowledgment.
746
747 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
748
749 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
750 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
751
752
753
754 === 3.2.5 Set the time synchronization interval ===
755
756
757 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
758
759 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
760
761 * Example: 0x28 01  ~/~/ Synchronize once a day
762 * Example: 0x28 03  ~/~/  Synchronize once every three days
763 )))
764
765
766 === 3.2.6  Alarm Mode ===
767
768
769 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
770
771 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
772
773 Format: Command Code (0x09) followed by 4 bytes.
774
775 Example: 09 aa aa bb bb
776
777 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
778 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
779 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
780 Minimum temperature threshold
781
782 (Minimum not to exceed: -30℃)
783 )))
784 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
785 Maximum temperature threshold
786
787 (Maximum not to exceed: 120℃)
788 )))
789
790 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
791 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
792
793 Note:
794
795 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
796 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
797
798
799
800 === 3.2.7 Multi sampling ===
801
802 **Feature**: Sampling multiple times and uplink together.
803
804 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
805
806 Format: Command Code (0x0A) followed by 3 bytes.
807
808 Example: 0A aa aa bb
809
810 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
811 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
812 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
813 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
814
815 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
816
817
818 = 4. Firmware update =
819
820
821 **Firmware download link **(% class="mark" %)(To be updated...)
822
823 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
824
825 * For LoRa part: OTA firmware update via LoRa.
826
827 * For BLE and controller part.
828
829
830
831 == 4.1 Update LoRa software ==
832
833 (% class="wikigeneratedid" %)
834 User can change firmware DMT01 charger to:
835
836 * Change Frequency band/ region.
837 * Update with new features.
838 * Fix bugs.
839
840 (((
841 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
842
843 **Methods to Update Firmware:**
844
845 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
846
847
848 )))
849
850 == 4.2 Update BLE software ==
851
852 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
853
854 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
855
856 [[image:1754547742655-178.png||height="364" width="1057"]]
857
858
859 Step 2: After the phone is installed, open the installed EspbleOTA
860 [[image:1754548807155-607.gif]]
861
862 (% style="color:red" %)**Note:**
863
864 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
865
866 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
867
868
869 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
870
871 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
872
873 [[image:1754555502747-456.gif||height="659" width="297"]]
874
875
876 Step 4: Wait for the update to complete
877
878 [[image:1754555791301-172.jpg||height="618" width="277"]]
879
880
881
882
883 = 5.  FAQ =
884
885
886
887 = 6.  Order Info =
888
889
890 Part Number: (% style="color:blue" %)**DMT01-XX**
891
892 (% style="color:red" %)**XX:**
893
894 * **EU433**: Frequency bands EU433
895 * **EU868**: Frequency bands EU868
896 * **KR920**: Frequency bands KR920
897 * **CN470**: Frequency bands CN470
898 * **AS923**: Frequency bands AS923
899 * **AU915**: Frequency bands AU915
900 * **US915**: Frequency bands US915
901 * **IN865**: Frequency bands IN865
902 * **CN779**: Frequency bands CN779
903
904 = 7. ​ Packing Info =
905
906
907 (% style="color:#037691" %)**Package Includes:**
908
909 * DMT01 -  Digital Meat Thermoneter x 1
910
911 (% style="color:#037691" %)**Dimension and weight:**
912
913 * Device Size: cm
914 * Device Weight: g
915 * Package Size / pcs : cm
916 * Weight / pcs : g
917
918 = 8.  ​Support =
919
920
921 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
922 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].