Wiki source code of DMT01

Version 79.2 by Mengting Qiu on 2025/08/07 16:46

Show last authors
1
2
3 [[image:1753592237986-145.png||height="354" width="118"]] [[image:1753592287802-550.png||height="237" width="341"]]
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
11 (((
12 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
13 )))
14
15
16
17 = 1.  Introduction =
18
19 == 1.1 ​ What is DMT01 Wireless Meat Thermometer ==
20
21
22 The DMT01 is a (% style="color:blue" %)professional-grade wireless meat thermometer(%%) engineered for accurate, real-time temperature monitoring in commercial cooking environments. Ideal for restaurants, central kitchens, catering services, and food processing facilities, the DMT01 ensures consistent results across various cooking methods—including grilling, smoking, roasting, deep-frying, sous vide, baking, and more. Its precise monitoring helps improve cooking efficiency, ensure food safety, and meet HACCP compliance standards.
23
24 The system consists of two components:
25 - (% style="color:blue" %)Food-grade BLE High-Temperature Probe(%%) – A durable, high-heat resistant probe that measures internal food temperature during cooking.
26 - (% style="color:blue" %)Charging Base with BLE & LoRaWAN Forwarder(%%) – This base not only charges the probe but also acts as a communication bridge. It receives temperature data from the BLE probe and transmits it via the LoRaWAN long-range wireless protocol to your IoT platform or monitoring system.
27
28 With its dual wireless support ((% style="color:blue" %)BLE for close-range/small design(%%) and (% style="color:blue" %)LoRaWAN for long-range data transmission(%%)), the DMT01 is ideal for both home cooking enthusiasts and commercial kitchen environments seeking smart, connected temperature monitoring.
29
30 == ​1.2  Features ==
31
32 * Wireless Meat Thermometer – Designed for accurate and reliable cooking temperature monitoring
33 * Food-Grade Probe – Safe for food contact and dishwasher-compatible for easy cleaning
34 * BLE 5.1 Broadcasting – Supports real-time local data transmission via Bluetooth Low Energy
35 * LoRaWAN Connectivity – Enables long-range, low-power data transmission to IoT platforms
36 * Smart Uplink Triggering – Supports periodic data reporting and real-time alerts on temperature thresholds
37
38 (% style="display:none" %)
39
40 == 1.3 Specification ==
41
42
43 (% style="color:blue" %)**Common DC Characteristics:**
44
45 * Supply Voltage: +5v via USB Type-C
46 * Operating Temperature:
47
48 (% style="color:blue" %)**Food Probe Spec:**
49
50 * Length: 126mm
51 * Diameter: 6mm
52 * Food temperature: -30 ~~110 °C, Accuracy: ±0.5°C
53 * Ambient temperature: 0 ~~380°C, Accuracy: ±5°C
54 * Wireless: BLE 5.1
55 * Distance: ≥ 30m
56 * Battery: 4mAh
57 * Recharge time: < 2 hours
58 * Battery Duration: >30 hours
59 * IP Rate: IP67, Dish Washer proof
60
61
62
63 (% style="color:blue" %)**Charger Spec:**
64
65 * BLE v5.1 + LoRaWAN
66 * Power Input: USB Type-C, +5v
67 * Battery: Li-ion , 3000mAh
68 * Recharge time: < 2 hours
69
70
71
72
73 == 1.4 ​ Applications ==
74
75 * Commercial Kitchen
76 * Restaurant
77 * Catering
78 * Food Processing
79 * Central Kitchen
80 * Cloud Kitchen
81 * HACCP Monitoring
82 * Food Safety
83 * Meat Factory
84 * Industrial Cooking
85
86 == 1.5 Product Apperance ==
87
88 (% class="wikigeneratedid" %)
89 [[image:1753594523550-152.png||height="462" width="416"]]
90
91
92 == 1.6  Working mode ==
93
94
95 (% style="color:blue" %)**Deep Sleep Mode:**(%%)** **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
96
97 (% style="color:blue" %)**Working Mode:**(%%) In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
98
99
100 == 1.7 LED Status ==
101
102
103 The DMT01 uses a dual-color LED to indicate system status:
104
105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
106 |(% style="background-color:#4f81bd; color:white; width:196px" %)**LED Behavior**|(% style="background-color:#4f81bd; color:white; width:305px" %)**Description**
107 |(% style="width:196px" %)Green breathing effect|(% style="width:305px" %)Probe is inserted and charging
108 (LED turns off immediately when probe is removed)
109 |(% style="width:196px" %)Red solid (5 seconds)|(% style="width:305px" %)Mode switched successfully (after 1-3s button press)
110 |(% style="width:196px" %)Red blinking (15 seconds)|(% style="width:305px" %)Charging base low battery (<15% capacity)
111 |(% style="width:196px" %)Red/Green alternating blink (3 seconds)|(% style="width:305px" %)Device reset in progress (after 3s long press)   
112 |(% style="width:196px" %)Single green blink|(% style="width:305px" %)BLE connection established between probe and base
113
114
115
116 == 1.8 Button Function ==
117
118 [[image:1754120439617-600.jpg||height="404" width="404"]]
119
120 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:536.222px" %)
121 |=(% style="width: 147px; background-color: rgb(79, 129, 189); color: white;" %)**Behavior on ACT**|=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 254px; background-color: rgb(79, 129, 189); color: white;" %)**Action**
122 |(% style="background-color:#f2f2f2; width:147px" %) [[image:1754045287749-587.png]]>3s|(% style="background-color:#f2f2f2; width:130px" %)Active Device|(% style="background-color:#f2f2f2; width:254px" %)(((
123 Red/Green alternating blink (3 seconds), DMT01 will enter working mode and start to JOIN LoRaWAN network.
124 When the probe is placed in the repeater to charge, the green LED above the relay box will have a breathing effect. When the probe is taken out, the LED light will go out.
125 )))
126 |(% style="background-color:#f2f2f2; width:147px" %)[[image:1754045287749-587.png]] 1~~3s|(% style="background-color:#f2f2f2; width:130px" %)Switch working mode|(% style="background-color:#f2f2f2; width:254px" %)(((
127 There are three operating modes:
128 Default LoRaWAN and Bluetooth broadcast mode,
129 Separate LoRaWAN mode
130
131 Separate Bluetooth broadcast mode.
132 (% style="color:red" %)**Note:**(%%) To switch modes, remove the probe and press the button; otherwise, the mode will not switch.
133 )))
134
135
136
137 == 1.9 Power on device and Recharge Probe ==
138
139
140
141
142 = 2.  Use DMT01 =
143
144 == 2.1  How it works ==
145
146 (((
147 (((
148
149
150 DMT01 Include two parts,
151
152 1. The food grade probe : used to measure the meat temperature
153 1. The Charger which is also a LoRaWAN End node: used to connect the probe via BLE and get the temperature and send via LoRaWAN to IoT server.
154
155
156
157 Consider the BLE coverage , there is two cases:
158
159 === **Connection Mode: Probe is near by the Charge, within BLE range** ===
160
161 Probe will establish connection to the charge via BLE.  and the data flow is as below.
162 )))
163
164 [[image:1753622303925-386.png]]
165
166
167 === **Broadcast Mode: Probe is far away from the Charge, out of BLE range** ===
168
169 Probe will auto swtich to BLE broadcast mode and broadcast the data via BLE. Any BLE Scaner can pick up the signal and send to IoT server.
170
171 For example:
172
173 1) User can use BH01 BLE to LoRaWAN converter to pick up the BLE signal to IoT Server
174
175 2) User can use Mobile phone to get the broadcast signal and further process.
176
177
178 == 2.2 Activate Device ==
179
180 To use DMT01 send data to LoRaWAN network, user need to:
181
182 1. Input the OTAA Keys in LoRaWAN Network Server
183 1. Make sure there is LoraWAN network
184 1. Press the button on the DMT01 for more than 3 seconds, DMT01 will start to connect to LoRaWAN network
185
186
187
188 After the DMT01 Join LoRaWAN network, once user take out the probe, the probe will start to measure temperature and user will be to see the data on the server.
189 )))
190
191
192 == 2.3 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:1754298519453-808.jpg||height="211" width="951"]]
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from DMT01.
203
204 Each DMT01 is shipped with a sticker with the default device EUI as below:
205
206 [[image:1754298588891-599.jpeg]](% style="display:none" %)
207
208 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:(% style="display:none" %)
209
210 (% style="color:blue" %)**Create the application.**
211
212 [[image:1754298671647-982.png]]
213
214 [[image:1754298685721-106.png]]
215
216 (% style="color:blue" %)**Add devices to the created Application.**
217
218 [[image:1754298708270-733.png]]
219
220 [[image:1754298719336-394.png]]
221
222 (% style="color:blue" %)**Enter end device specifics manually.**
223
224 [[image:1754298737089-161.png]]
225
226 (% style="color:blue" %)**Add DevEUI and AppKey.**
227
228 (% style="color:blue" %)**Customize a platform ID for the device.**
229
230 [[image:1754298751553-229.png]]
231
232
233 (% style="color:blue" %)**Step 2: **(%%)Add decoder
234
235 In TTN, user can add a custom payload so it shows friendly reading.
236
237 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
238
239 Below is TTN screen shot:
240
241 [[image:1754298862776-783.png||height="609" width="1426"]]
242
243 [[image:1754299076396-787.png]]
244
245 (% style="color:blue" %)**Step 3:**(%%) Activate on DMT01
246
247 Press the button for 3 seconds to activate the DMT01.
248
249 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
250
251 [[image:1754298481895-828.png||height="441" width="1387"]]
252
253
254
255 == 2.3 LoRaWAN Payload ==
256
257
258 === 2.3.1 Probe in-place detection, FPORT~=6 ===
259
260 There are three types of detection:
261
262
263
264
265
266 === 2.3.1 Device Status, FPORT~=5 ===
267
268
269 Users can use the downlink command(**0x26 01**) to ask DMT01 to send device configure detail, include device configure status. DMT01 will uplink a payload via FPort=5 to server.
270
271 The Payload format is as below.
272
273 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
274 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
275 |(% style="width:103px" %)**Size (bytes)**|(% style="width:91px" %)**1**|(% style="width:98px" %)**2**|(% style="width:103px" %)**1**|(% style="width:112px" %)**1**
276 |(% style="width:103px" %)Value|(% style="width:91px" %)Sensor Model|(% style="width:98px" %)Firmware Version|(% style="width:103px" %)Frequency Band|(% style="width:112px" %)Sub-band
277
278 Example in TTN:
279
280 [[image:1754299464263-797.png||height="274" width="1384"]]
281
282
283 (% style="color:#037691" %)**Sensor Model**(%%): For DMT01, this value is 0x4B
284
285 (% style="color:#037691" %)**Firmware Version**(%%): 0x0101, Means: v1.0.1 version
286
287 (% style="color:#037691" %)**Frequency Band**(%%):
288
289 0x01: EU868
290
291 0x02: US915
292
293 0x03: IN865
294
295 0x04: AU915
296
297 0x05: KZ865
298
299 0x06: RU864
300
301 0x07: AS923
302
303 0x08: AS923-1
304
305 0x09: AS923-2
306
307 0x0a: AS923-3
308
309 0x0b: CN470
310
311 0x0c: EU433
312
313 0x0d: KR920
314
315 0x0e: MA869
316
317 (% style="color:#037691" %)**Sub-Band**(%%):
318
319 AU915 and US915:value 0x00 ~~ 0x08
320
321 CN470: value 0x0B ~~ 0x0C
322
323 Other Bands: Always 0x00
324
325
326 === 2.3.2  Sensor Data. FPORT~=2 ===
327
328
329 Sensor Data is uplink via FPORT=2
330
331 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
332 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
333 **Size(bytes)**
334 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
335 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
336 Timestamp
337
338
339 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
340 BoxBat
341 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
342
343 [[image:1754300947187-648.png||height="641" width="1351"]]
344
345
346
347 ==== (% style="color:#4472c4" %)**Unit timestamp**(%%) ====
348
349 Unit TimeStamp Example: 689085D7(H) = 1754301911(D)
350
351 Put the decimal value into this link([[https:~~/~~/www.epochconverter.com)>>https://www.epochconverter.com]])to get the time.
352
353
354 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
355
356 **Example**:
357
358 If payload is 0x01: BLE_LoRa
359
360 If payload is 0x02: LoRa
361
362 If payload is 0x03: BLE
363
364
365 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
366
367 **Example**:
368
369 If the payload is C12309250F1A, the MACaddr is C12309250F1A
370
371
372 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
373
374 **Example:**
375
376 If payload is 0x64 = 100%
377
378
379 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
380
381 **Example:**
382
383 If payload is 0x46 = 70%
384
385
386 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
387
388 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
389
390 **Example**:
391
392 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
393
394 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
395
396
397 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
398
399 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
400
401 **Example**:
402
403 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
404
405 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
406
407
408
409 == 2.4 Bluetoothe Broadcast Payload ==
410
411 Scan and obtain DMT01 device broadcast data through a third-party mobile phone app (such as nRF Connect)
412
413 Example:
414
415 Note: The following data is obtained through the **nRF Connect tool**.
416
417 [[image:1754305290140-806.jpg||height="680" width="432"]]
418
419
420 If the scanned payload is 0x0201060609444D5430310EFF  **01C12309250F1AD100CD006446   **0512E001E001
421
422 (% style="color:red" %)**Note: **
423
424 * The first 12 bytes in the payload are the Bluetooth packet header data and do not need to be decoded.
425 * The last 6 bytes in the payload are the Bluetooth packet trailer data and do not need to be decoded.
426
427 So the payload is:**01C12309250F1AD100CD006446**
428
429
430 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame header**(%%) ====
431
432 Example: 0x0201060609444D5430310EFF
433
434
435 ==== (% style="color:#4472c4" %)**DevMode**(%%) ====
436
437 **Example**:
438
439 If payload is 0x01: BLE_LoRa
440
441 If payload is 0x02: LoRa
442
443 If payload is 0x03: BLE
444
445
446 ==== (% style="color:#4472c4" %)**MACaddr**(%%) ====
447
448 **Example**:
449
450 If the payload is C12309250F1A, the MACaddr is C12309250F1A
451
452
453 ==== (% style="color:#4472c4" %)**ProbeBat**(%%) ====
454
455 **Example:**
456
457 If payload is 0x64 = 100%
458
459
460 ==== (% style="color:#4472c4" %)**BoxBat**(%%) ====
461
462 **Example:**
463
464 If payload is 0x46 = 70%
465
466
467 ==== (% style="color:#4472c4" %)**Food temperature**(%%) ====
468
469 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
470
471 **Example**:
472
473 If payload is: D300H = 00D3H, temp = 00D3H /10 = 21.1 degree
474
475 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
476
477
478 ==== (% style="color:#4472c4" %)**Ambient temperature**(%%) ====
479
480 Because the food temperature data is a little-endian sequence, the order of the front and back bytes needs to be swapped during decoding.
481
482 **Example**:
483
484 If payload is: D200H = 00D2H, temp = 00D2H /10 = 21.0 degree
485
486 If payload is: 3FFFH  = FF3F , temp = (FF3FH - 65536)/10 = -19.3 degrees.
487
488
489 ==== (% style="color:#4472c4" %)**Bluetooth data packet frame tail**(%%) ====
490
491 Example: 0x0512E001E001
492
493
494
495 == 2.5 Datalog Feature ==
496
497
498 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, DMT01 will store the reading for future retrieving purposes.
499
500
501 === 2.5.1 How datalog works ===
502
503
504 DMT01 will wait for ACK for every uplink, when there is no LoRaWAN network,DMT01 will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
505
506 * (((
507 a) DMT01 will do an ACK check for data records sending to make sure every data arrive server.
508 )))
509 * (((
510 b) DMT01 will send data in **CONFIRMED Mode**, but DMT01 won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if DMT01 gets a ACK, DMT01 will consider there is a network connection and resend all NONE-ACK messages.
511
512
513 )))
514
515 === 2.5.2 Enable Datalog ===
516
517 Using the platform downlink** 07 01**, you can enable the device to automatically send **non-ACK** messages. Once enabled, the LC01 will wait for an acknowledgment (ACK) for every uplink. If there is no LoRaWAN network available, DMT01 will mark these records as non-ACK messages, store the sensor data, and continue checking for network availability (at 10-second intervals) to resend all stored messages once the network is restored.
518
519 * (((
520 a) DMT01 performs an ACK check for each data record to ensure it successfully reaches the server.
521 )))
522 * (((
523 b) When automatic sending of non-ACK messages is enabled, the DMT01 transmits data in **CONFIRMED** mode. If an ACK is not received, it does not resend the packet; instead, it marks it as a **non-ACK** message. During subsequent uplinks, if the DMT01 receives an ACK, it considers the network restored and will resend all stored non-ACK messages.
524 )))
525
526
527
528 === 2.5.3 Unix TimeStamp ===
529
530
531 DMT01 uses Unix TimeStamp format based on
532
533 [[image:1754354802681-163.jpeg]]
534
535 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
536
537 Below is the converter example
538
539 [[image:1754354818964-624.jpeg]]
540
541
542
543 === 2.5.4 Set Device Time ===
544
545
546 You need to run downlink command 28 01 to enable time synchronization.
547
548 Once the LC01 joins the LoRaWAN network, it will send the MAC command **DeviceTimeReq**, and the server will reply with **DeviceTimeAns** to provide the current time to the LC01. If the LC01 fails to receive the time from the server, it will use its internal time and wait for the next time request. //(By default, this occurs once every 10 days.)//
549
550 {{info}}
551 The LoRaWAN server must support LoRaWAN v1.0.3 (MAC v1.0.3) or higher to use this MAC command feature. ChirpStack, The Things Stack v3, and Loriot support it, but The Things Stack v2 does not. If the server does not support this command, it will discard the uplink packet containing it. As a result, the user will lose the time request packet when the automatic time synchronization function is enabled on TTN v2.
552 {{/info}}
553
554 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
555
556 * Example: 0x28 01  ~/~/ Automatic time synchronization Enabled
557 * Example: 0x28 00  ~/~/  Automatic time synchronization Disable.
558
559
560
561 === 2.5.5 Datalog Uplink payload (FPORT~=3) ===
562
563
564 The Datalog uplinks will use below payload format.
565
566 **Retrieval data payload:**
567
568 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
569 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
570 **Size(bytes)**
571 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)4|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 150px; background-color: #4F81BD;color:white" %)6|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)1|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2|=(% style="width: 80px; background-color: #4F81BD;color:white" %)2
572 |(% style="width:99px" %)Value|(% style="width:69px" %)(((
573 Timestamp
574
575
576 )))|(% style="width:130px" %)DevMode|(% style="width:194px" %)MACaddr|(% style="width:106px" %)ProbeBat|(% style="width:97px" %)(((
577 BoxBat
578 )))|(% style="width:97px" %)Message Type|(% style="width:97px" %)(((
579 tempData
580
581 Length
582 )))|(% style="width:97px" %)Food temperature|(% style="width:97px" %)Ambient temperature
583
584 **No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
585
586 **Poll Message Flag**: 1: This message is a poll message reply.
587
588 * Poll Message Flag is set to 1.
589
590 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
591
592 For example, in US915 band, the max payload for different DR is:
593
594 **a) DR0:** max is 11 bytes so one entry of data
595
596 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
597
598 **c) DR2:** total payload includes 11 entries of data
599
600 **d) DR3: **total payload includes 22 entries of data.
601
602 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
603
604
605 If user sends below downlink command: 316892FD706893103005
606
607 Where : Start time: 6892FD70 = time 25/8/6 07:00:00
608
609 Stop time: 68931030 = time 25/8/6 08:20:00
610
611
612 DMT01 **will uplink this payload.**
613
614 [[image:1754468836928-459.png]]
615
616 (((
617 68930FD201C12309250F1A643C4028E000EA00DF00EA00DF00EC00DF00EF00DF00F100DE00F400DC00F700DC00F800DB00F900DB00FD00
618
619 6893100E01C12309250F1A643C4028DE000401FF00090105010D0103011001030112011A011401150115010E0117010A01170104011801
620 )))
621
622 (((
623 Where the first 55 bytes is for the first entry:
624 )))
625
626 (((
627 **68930FD2 01 C12309250F1A 64 3C 40 28 E000 EA00 DF00 EA00 DF00 EC00 DF00 EF00 DF00 F100 DE00 F400 DC00 F700 DC00 F800 DB00 F900 DB00 FD00**
628 )))
629
630 (((
631 **Unix time** is 0x68930FD2=1754468306s=25/8/6 08:18:00
632
633 **DevMode** is 0x01 =  BLE_LoRa
634
635 **MACaddr **is 0xC12309250F1A = C12309250F1A
636
637 **ProbeBat **is 0x64 = 100%
638
639 **BoxBat **is 0x3c = 60%
640
641 **Message Type** is 0x40 = POLL_REPLY
642
643 **tempDataLength **is 0x28 = 40(Represents the total number of temperature bytes of the current group)
644
645 **Food temperature** is 0xE000 = 00E0/10 = 22.4℃
646
647 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
648
649 **Food temperature** is 0xDF00 = 00FD/10 = 25.3℃
650
651 **Ambient temperature** is 0xEA00 = 0x00EA/10=23.4℃
652
653 One set of data contains 10 sets of data, and so on...
654 )))
655
656
657 = 3. Configure DMT01  ~-~- 需要修改 =
658
659
660 DMT01 supports below configure method:
661
662 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
663
664
665
666 == 3.1 General Commands ==
667
668 These commands are to configure:
669
670 * General system settings like: uplink interval.
671 * LoRaWAN protocol & radio related command.
672
673 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
674
675 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
676
677 (% style="color:red" %)**Note: DMT01 can only be configured using Downlink commands and does not support configuration using AT commands.**
678
679
680 (((
681 == 3.2 Downlink Commands Set ==
682
683
684 These commands only valid for DMT01, as below:
685
686 === 3.2.1 Set Transmit Interval Time ===
687
688
689 (% style="color:#037691" %)**AT Command:**
690
691 There is no AT command to set TDC time.
692
693
694 **Feature**: Change LoRaWAN End Node Transmit Interval.
695
696 (% style="color:blue" %)**Downlink Command: 0x01**
697
698 Format: Command Code (0x01) followed by 3 bytes time value.
699
700 If the downlink payload is **0100003C**, it means set the end node's transmit Interval is set to 0x00003C = 60 seconds, with the type code 01.
701
702 * **Example 1**: Downlink Payload: 0100001E  ~/~/  Sets the transmit interval (TDC) to 30 seconds
703 * **Example 2**: Downlink Payload: 0100003C  ~/~/  Sets the transmit interval (TDC) to 60 seconds
704
705
706
707 === 3.2.2 Get Device Status ===
708
709
710 Send a LoRaWAN downlink to request the device's alarm settings.
711
712
713 (% style="color:blue" %)**Downlink Payload:  **(%%)**0x26 01**
714
715 The sensor will upload device status via FPort=5. See the payload section for details.
716
717
718 === 3.2.3 Clear Flash Record ===
719
720
721 (% style="color:#037691" %)**AT Command:**
722
723 There is no AT command to Clear flash storage for the data log feature
724
725
726 **Feature**: Clear flash storage for the  data log feature.
727
728 (% style="color:#4f81bd" %)**Downlink Command: 0x08**
729
730 * Example: 0x0801  ~/~/ Clears all saved data in flash.
731
732
733
734 === 3.2.4 Confirmed Mode ===
735
736
737 (% style="color:#037691" %)**AT Command:**
738
739 There is no AT command to control whether Confirmed Mode is enabled or disabled.
740
741
742 **Feature**: Mode for sending data that requires acknowledgment.
743
744 (% style="color:#4f81bd" %)**Downlink Command: 0x07**
745
746 * Example: 0x07 01  ~/~/ Confirmed Mode enabled.
747 * Example: 0x07 00  ~/~/  Confirmed Mode disable.
748
749
750
751 === 3.2.5 Set the time synchronization interval ===
752
753
754 **Feature**: Set how often to perform time synchronization (default: 10 days, unit: days)
755
756 (% style="color:#4f81bd" %)**Downlink Command: 0x28**
757
758 * Example: 0x28 01  ~/~/ Synchronize once a day
759 * Example: 0x28 03  ~/~/  Synchronize once every three days
760 )))
761
762
763 === 3.2.6  Alarm Mode ===
764
765
766 **Feature**: When the sample temperature is lower or higher than the set threshold, it will automatically alarm (the alarm mode is only for food temperature).
767
768 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
769
770 Format: Command Code (0x09) followed by 4 bytes.
771
772 Example: 09 aa aa bb bb
773
774 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
775 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
776 |(% style="width:154px" %)aa aa|(% style="width:196px" %)(((
777 Minimum temperature threshold
778
779 (Minimum not to exceed: -30℃)
780 )))
781 |(% style="width:154px" %)bb bb|(% style="width:196px" %)(((
782 Maximum temperature threshold
783
784 (Maximum not to exceed: 120℃)
785 )))
786
787 * Example: 0x09 00 14 00 15  ~/~/ Set the minimum threshold to 20℃ and the maximum threshold to 25℃
788 * Example: 0x09 00 00 00 00  ~/~/  Disable threshold alarm mode
789
790 Note:
791
792 * When the temperature exceeds the set minimum and maximum temperature thresholds, sampling will be performed at an interval of every 6 seconds. Each set of temperature data will be immediately uploaded to the server.
793 * The set minimum and maximum alarm temperatures must be within the food temperature range. The temperature detection range is -30 to 120°C.
794
795
796
797 === 3.2.7 Multi sampling ===
798
799 **Feature**: Sampling multiple times and uplink together.
800
801 (% style="color:#4f81bd" %)**Downlink Command: 0x09**
802
803 Format: Command Code (0x0A) followed by 3 bytes.
804
805 Example: 0A aa aa bb
806
807 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
808 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Parameter**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**
809 |(% style="width:154px" %)aa aa|(% style="width:196px" %)Sampling interval (range: 6~~65535s)
810 |(% style="width:154px" %)bb|(% style="width:196px" %)Sampling times (range: 1~~12 times)
811
812 Example: 0x0A 06 0A  ~/~/Sampling is done once every 6 seconds, and uploading is done after sampling 10 data points, i.e. uploading is done once every 1 minute.
813
814
815 = 4. Firmware update =
816
817
818 **Firmware download link **(% class="mark" %)(To be updated...)
819
820 User can upgrade the firmware for DMT01 charger. The charger include two piece of software:
821
822 * For LoRa part: OTA firmware update via LoRa.
823
824 * For BLE and controller part.
825
826
827
828 == 4.1 Update LoRa software ==
829
830 (% class="wikigeneratedid" %)
831 User can change firmware DMT01 charger to:
832
833 * Change Frequency band/ region.
834 * Update with new features.
835 * Fix bugs.
836
837 (((
838 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AE9nOhl7iwYvmnz7ggQXwZ0/LoRaWAN%20End%20Node/DMT01/Firmware?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
839
840 **Methods to Update Firmware:**
841
842 * (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
843
844
845 )))
846
847 == 4.2 Update BLE software ==
848
849 Step 1: You need to download an APP named: EspBleOTA on your mobile phone.
850
851 Download link of APK file for Android: [[APK file>>https://github.com/EspressifApps/esp-ble-ota-android/releases/tag/rc]]
852
853 [[image:1754547742655-178.png||height="364" width="1057"]]
854
855
856 Step 2: After the phone is installed, open the installed EspbleOTA
857 [[image:1754548807155-607.gif]]
858
859 (% style="color:red" %)**Note:**
860
861 (% style="color:red" %)**1. When you open it, the app will request permission to use your phone's Bluetooth. Please grant permission, otherwise the app will not be able to search for Bluetooth.**
862
863 (% style="color:red" %)**2. You need to pull down the scan display window again and rescan BLE.**
864
865
866 Step 3: Select the Bluetooth device named DMT01 in the scanning display window and click to connect.
867
868 (% style="color:red" %)**Note: Before upgrading, you need to save the firmware in the directory of the phone. When upgrading, you need to enter the saved path and select the firmware.**
869
870 [[image:1754555502747-456.gif||height="659" width="297"]]
871
872
873 Step 4: Wait for the update to complete
874
875 [[image:1754555791301-172.jpg||height="618" width="277"]]
876
877
878
879
880 = 5.  FAQ =
881
882
883
884 = 6.  Order Info =
885
886
887 Part Number: (% style="color:blue" %)**DMT01-XX**
888
889 (% style="color:red" %)**XX:**
890
891 * **EU433**: Frequency bands EU433
892 * **EU868**: Frequency bands EU868
893 * **KR920**: Frequency bands KR920
894 * **CN470**: Frequency bands CN470
895 * **AS923**: Frequency bands AS923
896 * **AU915**: Frequency bands AU915
897 * **US915**: Frequency bands US915
898 * **IN865**: Frequency bands IN865
899 * **CN779**: Frequency bands CN779
900
901 = 7. ​ Packing Info =
902
903
904 (% style="color:#037691" %)**Package Includes:**
905
906 * DMT01 -  Digital Meat Thermoneter x 1
907
908 (% style="color:#037691" %)**Dimension and weight:**
909
910 * Device Size: cm
911 * Device Weight: g
912 * Package Size / pcs : cm
913 * Weight / pcs : g
914
915 = 8.  ​Support =
916
917
918 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
919 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].