Last modified by Xiaoling on 2025/05/05 08:51

From version 93.1
edited by Bei Jinggeng
on 2025/04/29 11:45
Change comment: Uploaded new attachment "image-20250429114526-1.png", version {1}
To version 102.1
edited by Xiaoling
on 2025/05/05 08:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -63,7 +63,6 @@
63 63  
64 64  The data for the end device set in server
65 65  
66 -
67 67  [[image:image-20240129142631-4.png||height="637" width="1256"]]
68 68  
69 69  Check if OTAA Keys match the keys in device.
... ... @@ -163,10 +163,205 @@
163 163  )))
164 164  
165 165  
166 -= 4. Transmision on ABP Mode =
165 += 4. Why i see packet lost =
167 167  
167 +== **1. Signal problem** ==
168 168  
169 +
170 +(% style="color:blue" %)**1)**(%%)  (% style="color:blue" %)**ADR automatic adjustment** (%%)
171 +
172 +**Reason:**
173 +
174 +When the signal is at a critical value, the server may configure the node to adjust to a lower power DR.
175 +At this time, the server is at risk of losing uplink.
176 +
177 +
178 +**Solution:**
179 +
180 +Users can manually fix the DR value.
181 +
182 +
183 +(% style="color:red" %)
184 +**Notice:**
185 +
186 +* User need to set Adaptive Data Rate(ADR)=0 first. otherwise device will respond to server's ADR command and change the DR according to server auto-adjustment.
187 +
188 +* Data Rate specifies Spreading Factor. The mapping varies in different frequency bands. User can check this link for detail. [[rp2-1.0.3-lorawan-regional-parameters.pdf>>https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/]]
189 +
190 +(% style="color:blue" %)**AT Command: AT+DR**
191 +
192 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:409px" %)
193 +|(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:147px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:100px" %)**Response**
194 +|(% style="width:156px" %)AT+DR=?|(% style="width:147px" %)Get the Data Rate.|(% style="width:100px" %)5(((
195 +OK
196 +)))
197 +|(% style="width:156px" %)AT+DR=2|(% style="width:147px" %)Set the Data Rate.|(% style="width:100px" %)OK(((
198 +
199 +)))
200 +
201 +(% style="color:blue" %)**Downlink Command: 0x2200aaFF**
202 +
203 +If the downlink payload=220001FF, it means setting the data rate to 1, while type code is 22 00 aa FF.
204 +
205 +* **Example 1**: Downlink Payload: **220001FF**  ~/~/ Set AT+DR=1.
206 +
207 +* **Example 2**: Downlink Payload: **220000FF**  ~/~/ Set AT+DR=0.
208 +
209 +(% style="display:none" %) (%%)
210 +
211 +
212 +(% style="color:blue" %)**2)**(%%)  (% style="color:blue" %)**Node antenna problem**
213 +
214 +**Reason:**
215 +
216 +Node antenna is loose
217 +
218 +
219 +**Solution:**
220 +
221 +Please check whether the antenna interface and module interface are detached
222 +
223 +[[image:image-20250429114526-1.png||height="429" width="303"]]
224 +
225 +
226 +
227 +(% style="color:blue" %)**3) **(%%) (% style="color:blue" %)**Gateway antenna problem**
228 +
229 +**Reason:**
230 +Gateway uses antenna with wrong frequency band
231 +
232 +For example: 868-band gateway uses antenna with 915-band, which will cause the signal to be greatly reduced
233 +
234 +
235 +**Solution:**
236 +
237 +Please check whether the silk screen on the antenna conflicts with the frequency you set.
238 +
239 +[[image:image-20250429115124-2.png]][[image:image-20250429115159-3.png||height="550" width="224"]]
240 +
241 +
242 +(% style="color:blue" %)**4) **(%%) (% style="color:blue" %)**Gateway module problem**
243 +
244 +**Reason:**
245 +
246 +Gateway uses module with wrong frequency band
247 +For example: 868-band gateway uses module with 915-band, which will cause the signal to be greatly reduced
248 +
249 +
250 +**Solution:**
251 +
252 +Please check whether the silkscreen of the module conflicts with the frequency you set.
253 +
254 +[[image:image-20250429115951-5.png||height="288" width="384"]][[image:image-20250429133640-7.png||height="284" width="378"]]
255 +
256 +
257 +== **2. Frequency point problem** ==
258 +
259 +
260 +**Reason:**
261 +
262 +There are multiple frequency configurations in AS923/US915/AU915/CN470.
263 +
264 +The frequency point of the gateway or server is wrong or missing.
265 +
266 +
267 +**Solution:**
268 +
269 +Users need to check whether the server or gateway configuration is missing or has an incorrect frequency.
270 +
271 +The frequency range used in the dragino node is as follows
272 +
273 +
274 +== **3. Frequency band problem** ==
275 +
276 +
277 +**Reason:**
278 +
279 +When there are multiple gateways, the node cannot lock the frequency band.
280 +
281 +
282 +**Solution:**
283 +
169 169  (((
285 +By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
286 +)))
287 +
288 +(((
289 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
290 +)))
291 +
292 +(((
293 +
294 +)))
295 +
296 +(((
297 +For example, in (% style="color:blue" %)**US915**(%%) band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
298 +)))
299 +
300 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627160940-13.png?rev=1.1||alt="image-20220627160940-13.png"]]
301 +
302 +
303 +(((
304 +When you use the TTN V3 network, the US915 frequency bands use are:
305 +)))
306 +
307 +* (((
308 +903.9 - SF7BW125 to SF10BW125
309 +)))
310 +* (((
311 +904.1 - SF7BW125 to SF10BW125
312 +)))
313 +* (((
314 +904.3 - SF7BW125 to SF10BW125
315 +)))
316 +* (((
317 +904.5 - SF7BW125 to SF10BW125
318 +)))
319 +* (((
320 +904.7 - SF7BW125 to SF10BW125
321 +)))
322 +* (((
323 +904.9 - SF7BW125 to SF10BW125
324 +)))
325 +* (((
326 +905.1 - SF7BW125 to SF10BW125
327 +)))
328 +* (((
329 +905.3 - SF7BW125 to SF10BW125
330 +)))
331 +* (((
332 +904.6 - SF8BW500
333 +)))
334 +
335 +(((
336 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN V3 network and uplink data. To solve this issue, you can access the device via the AT commands and run:
337 +)))
338 +
339 +(((
340 +(% style="color:blue" %)**AT+CHE=2**
341 +)))
342 +
343 +(((
344 +(% style="color:blue" %)**ATZ**
345 +)))
346 +
347 +
348 +(((
349 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
350 +)))
351 +
352 +(((
353 +The (% style="color:blue" %)**AU915**(%%) band is similar. Below are the AU915 Uplink Channels.
354 +
355 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627161124-14.png?rev=1.1||alt="image-20220627161124-14.png"]]
356 +
357 +
358 +)))
359 +
360 += 5. Transmision on ABP Mode =
361 +
362 +
363 +(((
170 170  In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
171 171  )))
172 172  
... ... @@ -185,9 +185,9 @@
185 185  Disable Frame Counter Check in ABP Mode
186 186  
187 187  
188 -= 5. Downstream Debug =
382 += 6. Downstream Debug =
189 189  
190 -== 5.1 How it work ==
384 +== 6.1 How it work ==
191 191  
192 192  
193 193  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
... ... @@ -198,7 +198,6 @@
198 198  * **Class A** : Suitable for Battery powered end node. Class A will save a lot of power but it can only receive downlink after each uplink
199 199  * **Class C**: End node can receive downlink immediately but have higher power consumption.
200 200  
201 -
202 202  
203 203  )))
204 204  
... ... @@ -219,7 +219,7 @@
219 219  
220 220  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
221 221  
222 -== 5.2 See Debug Info ==
415 +== 6.2 See Debug Info ==
223 223  
224 224  
225 225  (((
... ... @@ -324,7 +324,7 @@
324 324   1:0012345678}}}
325 325  
326 326  
327 -== 5.3 If problem doesn't solve ==
520 +== 6.3 If problem doesn't solve ==
328 328  
329 329  
330 330  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
... ... @@ -337,7 +337,7 @@
337 337  
338 338  * End Node traffic (from server UI) to shows end node activity in server.
339 339  
340 -= 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
533 += 7. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
341 341  
342 342  
343 343  (((
... ... @@ -363,7 +363,7 @@
363 363  )))
364 364  
365 365  
366 -= 7. Decrypt a LoRaWAN Packet =
559 += 8. Decrypt a LoRaWAN Packet =
367 367  
368 368  
369 369  (% style="color:blue" %)**1. LHT65N End device configure:**
... ... @@ -378,7 +378,6 @@
378 378  [[image:image-20240129170603-7.png||height="697" width="545"]][[image:image-20240129163741-3.png||height="694" width="565"]]
379 379  
380 380  
381 -
382 382  **Configuration: **
383 383  
384 384  [[image:image-20240129164219-4.png||height="612" width="440"]]
... ... @@ -395,7 +395,6 @@
395 395  [[image:image-20240129170137-6.png||height="459" width="1116"]]
396 396  
397 397  
398 -
399 399  (% style="color:blue" %)**3. Decode the info in CMD(Command prompt window)**
400 400  
401 401  LoRa packet Base64 format:  QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75 **(from LPS8-v2)**
... ... @@ -419,27 +419,18 @@
419 419  
420 420  **Step3: Parse the gateway raw payload.(./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75)**
421 421  
422 -
423 -
424 -
425 425  [[image:image-20240129192908-24.png||height="477" width="907"]]
426 426  
427 -
428 428  [[image:image-20240129192954-25.png||height="485" width="916"]]
429 429  
430 430  
618 += 9. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
431 431  
432 432  
433 -
434 -
435 -
436 -= 8. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
437 -
438 -
439 439  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
440 440  
441 441  
442 -= 9. Why do I see a "MIC Mismatch" error message from the server? =
624 += 10. Why do I see a "MIC Mismatch" error message from the server? =
443 443  
444 444  
445 445  (((
... ... @@ -477,7 +477,7 @@
477 477  4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
478 478  
479 479  
480 -= 10. Why I got the payload only with "0x00" or "AA~=~="? =
662 += 11. Why I got the payload only with "0x00" or "AA~=~="? =
481 481  
482 482  
483 483  (% style="color:blue" %)**Why sensor sends 0x00?**
... ... @@ -511,7 +511,7 @@
511 511  Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
512 512  
513 513  
514 -= 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
696 += 12. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
515 515  
516 516  
517 517  (((
... ... @@ -572,7 +572,7 @@
572 572  (Any combination of 16 bit codes can be used)
573 573  
574 574  
575 -= 12. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
757 += 13. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
576 576  )))
577 577  
578 578  
... ... @@ -579,7 +579,7 @@
579 579  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
580 580  
581 581  
582 -= 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
764 += 14. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
583 583  
584 584  
585 585  In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
image-20250429115124-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +193.2 KB
Content
image-20250429115159-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1014.1 KB
Content
image-20250429115942-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +435.8 KB
Content
image-20250429115951-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content
image-20250429120030-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content
image-20250429133640-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content