<
From version < 61.1 >
edited by Mengting Qiu
on 2024/01/29 15:24
To version < 37.2 >
edited by Xiaoling
on 2022/12/16 10:46
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  
6 6  
7 -= 1. Join process page check =
7 += 1.(% style="display:none" %) (%%) OTAA Join Process Debug =
8 8  
9 9  
10 10  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
... ... @@ -11,62 +11,57 @@
11 11  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
12 12  
13 13  * End node console to show the Join freuqency and DR. (If possible)
14 -
15 15  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible)
16 -
17 17  * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible)
18 -
19 19  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
20 -
21 21  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
22 22  
23 23  (% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
24 24  
25 25  * If the device is sending join request to server?
26 -
27 27  * What frequency the device is sending?
28 28  
29 -[[image:image-20240129142147-2.png||height="736" width="964"]]
24 +[[image:image-20220526164956-15.png||height="591" width="1153"]]
30 30  
31 -Console Output from End device to see the transmit frequency.
26 +Console Output from End device to see the transmit frequency
32 32  
33 33  
29 +
34 34  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
35 35  
36 36  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
37 -
38 38  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
39 39  
40 -[[image:image-20240129151608-6.jpeg||height="725" width="1256"]]
35 +[[image:image-20220526163608-2.png]]
41 41  
42 42  Console Output from Gateway to see packets between end node and server.
43 43  
44 44  
45 -(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
46 46  
47 -* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
41 +(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
48 48  
49 -* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
50 -
43 +* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
44 +* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
51 51  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
52 52  
53 -[[image:image-20240129150821-5.jpeg||height="522" width="1264"]]
47 +[[image:image-20220526163633-3.png]]
54 54  
55 -The Traffic for the End node in the server, use TTN as example.
49 +The Traffic for the End node in the server, use TTN as example
56 56  
57 57  
52 +
58 58  (% style="color:blue" %)**4. Data Page in LoRaWAN server**
59 59  
60 60  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
61 61  
62 -[[image:image-20240129142557-3.png||height="488" width="1267"]]
57 +[[image:image-20220526163704-4.png]]
63 63  
64 64  The data for the end device set in server
65 65  
66 66  
67 -[[image:image-20240129142631-4.png||height="637" width="1256"]]
62 +[[image:image-20220526163732-5.png]]
68 68  
69 -Check if OTAA Keys match the keys in device.
64 +Check if OTAA Keys match the keys in device
70 70  
71 71  
72 72  = 2. Notice of US915/CN470/AU915 Frequency band =
... ... @@ -73,17 +73,17 @@
73 73  
74 74  
75 75  (((
76 -If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
71 +If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
77 77  )))
78 78  
79 79  * (((
80 -What **sub-band** the server support?
75 +What **sub-band** the server support ?
81 81  )))
82 82  * (((
83 -What is the **sub-band** the gateway support?
78 +What is the **sub-band** the gateway support ?
84 84  )))
85 85  * (((
86 -What is the **sub-band** the end node is using?
81 +What is the **sub-band** the end node is using ?
87 87  )))
88 88  
89 89  (((
... ... @@ -95,7 +95,7 @@
95 95  )))
96 96  
97 97  (((
98 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
93 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
99 99  )))
100 100  
101 101  (((
... ... @@ -103,7 +103,7 @@
103 103  )))
104 104  
105 105  (((
106 -Here are the frequency tables for these bands as reference:
101 +Here are the freuqency tables for these bands as reference:
107 107  )))
108 108  
109 109  [[image:image-20220526163801-6.png]]
... ... @@ -128,7 +128,7 @@
128 128  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
129 129  )))
130 130  
131 -[[image:image-20240123151225-3.png||height="434" width="902"]]
126 +[[image:image-20220526164052-9.png]]
132 132  
133 133  (((
134 134  TTN FREQUENCY PLAN
... ... @@ -142,7 +142,7 @@
142 142  
143 143  (% style="display:none" %) (%%)
144 144  
145 -= 3. Why I see data lost/ is not periodically uplink Even the signal strength is good =
140 += 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
146 146  
147 147  
148 148  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
... ... @@ -176,11 +176,9 @@
176 176  
177 177  (((
178 178  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
179 -
180 -[[image:image-20240123161737-4.png||height="395" width="763"]]
181 181  )))
182 182  
183 -[[image:image-20240123161853-6.png||height="599" width="771"]]
176 +[[image:image-20220526164508-10.png]]
184 184  
185 185  Disable Frame Counter Check in ABP Mode
186 186  
... ... @@ -193,7 +193,7 @@
193 193  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
194 194  
195 195  (((
196 -Depends on Class A or Class C, the receive windows will be a little difference.
189 +Depends on Class A or Class C, the receive windows will be a little difference,
197 197  )))
198 198  
199 199  [[image:image-20220531161828-1.png]]
... ... @@ -213,6 +213,8 @@
213 213  
214 214  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
215 215  
209 +
210 +
216 216  == 5.2 See Debug Info ==
217 217  
218 218  
... ... @@ -225,12 +225,10 @@
225 225  )))
226 226  
227 227  (((
228 -Configure a downlink to the end device
229 -
230 -[[image:image-20240129152412-8.png||height="486" width="1206"]]
223 +Configure a downstream to the end device
231 231  )))
232 232  
233 -[[image:image-20240123163307-7.png||height="330" width="1125"]]
226 +[[image:image-20220526164623-12.png]]
234 234  
235 235  (((
236 236  Set a downstream in TTN and see it is sent
... ... @@ -238,10 +238,10 @@
238 238  
239 239  
240 240  (((
241 -This downstream info will then pass to the gateway downstream list. and the DR which is used (SF7BW500) in US915 is DR5.
234 +This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
242 242  )))
243 243  
244 -[[image:image-20240129152049-7.png||height="463" width="1166"]]
237 +[[image:image-20220526164650-13.png]]
245 245  
246 246  (((
247 247  Gateway Traffic can see this downstream info
... ... @@ -274,13 +274,13 @@
274 274  )))
275 275  
276 276  (((
277 -* (% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
270 +(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
271 +(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
272 +(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
273 +(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
278 278  
279 -* (% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
280 280  
281 -* (% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
282 -
283 -* (% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
276 +
284 284  )))
285 285  
286 286  (((
... ... @@ -323,13 +323,12 @@
323 323  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
324 324  
325 325  * End node console to show the transmit freuqency and DR.
326 -
327 327  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server.
328 -
329 329  * Gateway traffic (from server UI) to shows the data exchange between gateway and server.
330 -
331 331  * End Node traffic (from server UI) to shows end node activity in server.
332 332  
323 +
324 +
333 333  = 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
334 334  
335 335  
... ... @@ -362,9 +362,7 @@
362 362  (% style="color:blue" %)**1. LHT65 End device configure:**
363 363  
364 364  **Change to ABP Mode:  AT+NJM=0**
365 -
366 366  **Change to fix frequency:  AT+CHS=904900000**
367 -
368 368  **Change to fix DR:  AT+DR=0**
369 369  
370 370  
... ... @@ -405,7 +405,7 @@
405 405  )))
406 406  
407 407  
408 -= 8. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
398 += 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
409 409  
410 410  
411 411  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
... ... @@ -436,50 +436,27 @@
436 436  
437 437  * (((
438 438  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
439 -)))
440 440  
441 -(% class="wikigeneratedid" %)
442 -3)Wrong Regional Parameters version selected
443 - We generally use versions above 1.0.2
444 444  
445 -(% class="wikigeneratedid" %)
446 -[[image:image-20230322163227-1.png]]
431 +
432 +)))
447 447  
448 -(% class="wikigeneratedid" %)
449 -4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
450 -
451 -
452 452  = 10. Why i got the payload only with "0x00" or "AA~=~="? =
453 453  
454 454  
455 -(% style="color:blue" %)**Why sensor sends 0x00?**
437 +**Why this happen:**
456 456  
457 -For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
439 +For US915, AU915 or AS923 frequencies.It is possible because: .
458 458  
459 -**Possible Case 1**:
441 +When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
460 460  
461 -Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
443 +When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
462 462  
463 463  
464 -**Possible Case 2:**
446 +**How to solve:**
465 465  
466 -For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
448 +Solution: Use the decoder to filter out this 0x00 packet.
467 467  
468 -
469 -(% style="color:blue" %)**How to solve:**
470 -
471 -Solution:
472 -
473 -~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
474 -
475 -2. Data rate changed from DR3 to DR5, increasing upload byte length
476 -AT+ADR=0
477 -AT+DR=3
478 -
479 -Downlink:
480 -
481 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
482 -
483 483  Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
484 484  
485 485  
... ... @@ -554,24 +554,24 @@
554 554  = 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
555 555  
556 556  
557 -In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
524 +In US915, AU915 or CN470 frequency band, there are 8 subbands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Subband 2 in TTN. The gateway also configured to Subband 2 and cover eight channels in this subband. If the end node transfer data in Subband 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other subbands, for example subband 1, the packet won't arrive both gateway or LoRaWAN server.
558 558  
559 559  
560 -In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
527 +In Dragino Sensors old version firmware (before early 2022), the subband is fixed the subband to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
561 561  
562 -We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
529 +We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, In this case, In this case, the end node can support LoRaWAN servers with different subbands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
563 563  
564 564  * (((
565 -Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
532 +Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that subband
566 566  )))
567 567  * (((
568 -Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
535 +Use the Join successful sub-band if the server doesn't include subband info in the OTAA Join Accept message ( TTN v2 doesn't include)
569 569  )))
570 570  
571 -This change will make the activation time a little longer but make sure the device can be used in any sub-band.
538 +This change will make the activation time a littler longer but make sure the device can be used in any subband.
572 572  
573 573  
574 -Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
541 +Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the subband he use.
575 575  
576 576  
577 577  [[image:image-20221215223215-1.png||height="584" width="1280"]]
image-20230322163227-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -43.1 KB
Content
image-20240123150720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -108.0 KB
Content
image-20240129142110-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -126.9 KB
Content
image-20240129142147-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -116.1 KB
Content
image-20240129142557-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -125.7 KB
Content
image-20240129142631-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -189.0 KB
Content
image-20240129150821-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -129.2 KB
Content
image-20240129151608-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -318.1 KB
Content
image-20240129152049-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -148.3 KB
Content
image-20240129152412-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -133.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0