<
From version < 51.1 >
edited by Mengting Qiu
on 2024/01/23 18:23
To version < 36.1 >
edited by Edwin Chen
on 2022/12/15 22:32
>
Change comment: Uploaded new attachment "image-20221215223215-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Edwin
Content
... ... @@ -4,28 +4,26 @@
4 4  
5 5  
6 6  
7 -= 1.Join process page check =
7 += 1. OTAA Join Process Debug =
8 8  
9 +
9 9  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
10 10  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
11 11  
12 12  * End node console to show the Join freuqency and DR. (If possible)
13 -
14 14  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible)
15 -
16 16  * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible)
17 -
18 18  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
19 -
20 20  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
21 21  
19 +
20 +
22 22  (% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
23 23  
24 24  * If the device is sending join request to server?
25 -
26 26  * What frequency the device is sending?
27 27  
28 -[[image:image-20220526164956-15.png||height="591" width="1153"]]
26 +[[image:image-20220526164956-15.png]]
29 29  
30 30  Console Output from End device to see the transmit frequency
31 31  
... ... @@ -34,7 +34,6 @@
34 34  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
35 35  
36 36  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
37 -
38 38  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
39 39  
40 40  [[image:image-20220526163608-2.png]]
... ... @@ -43,17 +43,15 @@
43 43  
44 44  
45 45  
46 -(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
43 +(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
47 47  
48 -* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
49 -
50 -* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
51 -
45 +* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
46 +* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
52 52  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
53 53  
54 54  [[image:image-20220526163633-3.png]]
55 55  
56 -The Traffic for the End node in the server, use TTN as example.
51 +The Traffic for the End node in the server, use TTN as example
57 57  
58 58  
59 59  
... ... @@ -61,31 +61,32 @@
61 61  
62 62  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
63 63  
64 -[[image:image-20240123150720-1.png||height="459" width="1182"]]
59 +[[image:image-20220526163704-4.png]]
65 65  
66 66  The data for the end device set in server
67 67  
68 68  
69 -[[image:image-20240123150943-2.png||height="556" width="1179"]]
64 +[[image:image-20220526163732-5.png]]
70 70  
71 -Check if OTAA Keys match the keys in device.
66 +Check if OTAA Keys match the keys in device
72 72  
73 73  
69 +
74 74  = 2. Notice of US915/CN470/AU915 Frequency band =
75 75  
76 76  
77 77  (((
78 -If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
74 +If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
79 79  )))
80 80  
81 81  * (((
82 -What **sub-band** the server support?
78 +What **sub-band** the server support ?
83 83  )))
84 84  * (((
85 -What is the **sub-band** the gateway support?
81 +What is the **sub-band** the gateway support ?
86 86  )))
87 87  * (((
88 -What is the **sub-band** the end node is using?
84 +What is the **sub-band** the end node is using ?
89 89  )))
90 90  
91 91  (((
... ... @@ -97,7 +97,7 @@
97 97  )))
98 98  
99 99  (((
100 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
96 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
101 101  )))
102 102  
103 103  (((
... ... @@ -105,7 +105,7 @@
105 105  )))
106 106  
107 107  (((
108 -Here are the frequency tables for these bands as reference:
104 +Here are the freuqency tables for these bands as reference:
109 109  )))
110 110  
111 111  [[image:image-20220526163801-6.png]]
... ... @@ -130,12 +130,12 @@
130 130  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
131 131  )))
132 132  
133 -[[image:image-20240123151225-3.png||height="434" width="902"]]
129 +[[image:image-20220526164052-9.png]]
134 134  
135 135  (((
136 136  TTN FREQUENCY PLAN
137 137  
138 -(% style="display:none" %) (%%)
134 +
139 139  )))
140 140  
141 141  (((
... ... @@ -142,23 +142,24 @@
142 142  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
143 143  )))
144 144  
145 -(% style="display:none" %) (%%)
146 146  
147 -= 3. Why I see data lost/ is not periodically uplink? Even the signal strength is good =
148 148  
143 += 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
149 149  
145 +
150 150  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
151 151  
152 -* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
148 +* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
149 +* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
150 +* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
153 153  
154 -* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
155 -
156 -* (% style="color:blue" %)**LoRaWAN server**  (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
157 -
158 158  (((
159 159  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
160 160  )))
161 161  
156 +(((
157 +
158 +)))
162 162  
163 163  (((
164 164  Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
... ... @@ -165,6 +165,7 @@
165 165  )))
166 166  
167 167  
165 +
168 168  = 4. Transmision on ABP Mode =
169 169  
170 170  
... ... @@ -173,20 +173,27 @@
173 173  )))
174 174  
175 175  (((
174 +
175 +)))
176 +
177 +(((
176 176  So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
177 177  )))
178 178  
179 179  (((
180 -To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
182 +
183 +)))
181 181  
182 -[[image:image-20240123161737-4.png||height="395" width="763"]]
185 +(((
186 +To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
183 183  )))
184 184  
185 -[[image:image-20240123161853-6.png||height="599" width="771"]]
189 +[[image:image-20220526164508-10.png]]
186 186  
187 187  Disable Frame Counter Check in ABP Mode
188 188  
189 189  
194 +
190 190  = 5. Downstream Debug =
191 191  
192 192  == 5.1 How it work ==
... ... @@ -195,7 +195,7 @@
195 195  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
196 196  
197 197  (((
198 -Depends on Class A or Class C, the receive windows will be a little difference.
203 +Depends on Class A or Class C, the receive windows will be a little difference,
199 199  )))
200 200  
201 201  [[image:image-20220531161828-1.png]]
... ... @@ -206,17 +206,13 @@
206 206  Below are the requirement for the End Device to receive the packets.
207 207  
208 208  * The End Device must open the receive windows: RX1 or RX2
209 -
210 210  * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node.
211 -
212 212  * This downstream packet must arrive to the end node while RX1 or RX2 is open.
213 -
214 214  * This packet must match the frequency of the RX1 or RX2 window.
215 -
216 216  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
217 217  
218 -== ==
219 219  
220 +
220 220  == 5.2 See Debug Info ==
221 221  
222 222  
... ... @@ -229,10 +229,10 @@
229 229  )))
230 230  
231 231  (((
232 -Configure a downlink to the end device
233 +Configure a downstream to the end device
233 233  )))
234 234  
235 -[[image:image-20240123163307-7.png||height="330" width="1125"]]
236 +[[image:image-20220526164623-12.png]]
236 236  
237 237  (((
238 238  Set a downstream in TTN and see it is sent
... ... @@ -276,13 +276,13 @@
276 276  )))
277 277  
278 278  (((
279 -* (% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
280 +(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
281 +(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
282 +(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
283 +(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
280 280  
281 -* (% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
282 282  
283 -* (% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
284 -
285 -* (% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
286 +
286 286  )))
287 287  
288 288  (((
... ... @@ -319,6 +319,7 @@
319 319   1:0012345678}}}
320 320  
321 321  
323 +
322 322  == 5.3 If problem doesn't solve ==
323 323  
324 324  
... ... @@ -325,13 +325,12 @@
325 325  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
326 326  
327 327  * End node console to show the transmit freuqency and DR.
328 -
329 329  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server.
330 -
331 331  * Gateway traffic (from server UI) to shows the data exchange between gateway and server.
332 -
333 333  * End Node traffic (from server UI) to shows end node activity in server.
334 334  
334 +
335 +
335 335  = 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
336 336  
337 337  
... ... @@ -358,6 +358,7 @@
358 358  )))
359 359  
360 360  
362 +
361 361  = 7. Decrypt a LoRaWAN Packet =
362 362  
363 363  
... ... @@ -364,9 +364,7 @@
364 364  (% style="color:blue" %)**1. LHT65 End device configure:**
365 365  
366 366  **Change to ABP Mode:  AT+NJM=0**
367 -
368 368  **Change to fix frequency:  AT+CHS=904900000**
369 -
370 370  **Change to fix DR:  AT+DR=0**
371 371  
372 372  
... ... @@ -407,12 +407,14 @@
407 407  )))
408 408  
409 409  
410 -= 8. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
411 411  
411 += 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
412 412  
413 +
413 413  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
414 414  
415 415  
417 +
416 416  = 9. Why do I see a "MIC Mismatch" error message from the server? =
417 417  
418 418  
... ... @@ -438,53 +438,32 @@
438 438  
439 439  * (((
440 440  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
441 -)))
442 442  
443 -(% class="wikigeneratedid" %)
444 -3)Wrong Regional Parameters version selected
445 - We generally use versions above 1.0.2
446 446  
447 -(% class="wikigeneratedid" %)
448 -[[image:image-20230322163227-1.png]]
449 449  
450 -(% class="wikigeneratedid" %)
451 -4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
446 +
447 +)))
452 452  
453 -
454 454  = 10. Why i got the payload only with "0x00" or "AA~=~="? =
455 455  
456 456  
457 -(% style="color:blue" %)**Why sensor sends 0x00?**
452 +**Why this happen:**
458 458  
459 -For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
454 +For US915, AU915 or AS923 frequencies.It is possible because: .
460 460  
461 -**Possible Case 1**:
456 +When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
462 462  
463 -Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
458 +When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
464 464  
465 465  
466 -**Possible Case 2:**
461 +**How to solve:**
467 467  
468 -For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
463 +Solution: Use the decoder to filter out this 0x00 packet.
469 469  
470 -
471 -(% style="color:blue" %)**How to solve:**
472 -
473 -Solution:
474 -
475 -~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
476 -
477 -2. Data rate changed from DR3 to DR5, increasing upload byte length
478 -AT+ADR=0
479 -AT+DR=3
480 -
481 -Downlink:
482 -
483 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
484 -
485 485  Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
486 486  
487 487  
468 +
488 488  = 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
489 489  
490 490  
... ... @@ -546,6 +546,7 @@
546 546  (Any combination of 16 bit codes can be used)
547 547  
548 548  
530 +
549 549  = 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? =
550 550  )))
551 551  
... ... @@ -553,30 +553,6 @@
553 553  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
554 554  
555 555  
556 -= 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
557 557  
558 -
559 -In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
560 -
561 -
562 -In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
563 -
564 -We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
565 -
566 -* (((
567 -Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
568 -)))
569 -* (((
570 -Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
571 -)))
572 -
573 -This change will make the activation time a little longer but make sure the device can be used in any sub-band.
574 -
575 -
576 -Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
577 -
578 -
579 -[[image:image-20221215223215-1.png||height="584" width="1280"]]
580 -
581 581  (% class="wikigeneratedid" %)
582 582  
image-20230322163227-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -43.1 KB
Content
image-20240123150720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -108.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0