<
From version < 4.7 >
edited by Xiaoling
on 2022/05/11 14:57
To version < 3.1 >
edited by Xiaoling
on 2022/05/11 14:23
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,4 +1,4 @@
1 -**~ Contents:**
1 +
2 2  
3 3  {{toc/}}
4 4  
... ... @@ -60,39 +60,17 @@
60 60  
61 61  = 2. Notice of US915/CN470/AU915 Frequency band =
62 62  
63 -(((
64 64  If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
65 -)))
66 66  
67 -* (((
68 -What **sub-band** the server support ?
69 -)))
70 -* (((
71 -What is the **sub-band** the gateway support ?
72 -)))
73 -* (((
74 -What is the **sub-band** the end node is using ?
75 -)))
65 +* What **sub-band** the server support ?
66 +* What is the **sub-band** the gateway support ?
67 +* What is the **sub-band** the end node is using ?
76 76  
77 -(((
78 78  All of above should match so End Node can properly Join the server and don't have packet lost.
79 -)))
80 80  
81 -(((
82 -
83 -)))
84 -
85 -(((
86 86  In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
87 -)))
88 88  
89 -(((
90 -
91 -)))
92 -
93 -(((
94 94  Here are the freuqency tables for these bands as reference:
95 -)))
96 96  
97 97  [[image:https://wiki.dragino.com/images/thumb/3/3f/US915_FRE_BAND-1.png/600px-US915_FRE_BAND-1.png||height="170" width="600"]]
98 98  
... ... @@ -104,23 +104,15 @@
104 104  
105 105  [[image:https://wiki.dragino.com/images/thumb/3/3a/CN470_FRE_BAND-1.png/600px-CN470_FRE_BAND-1.png||height="205" width="600"]]
106 106  
107 -(((
108 108  CN470 Channels
109 -)))
110 110  
111 -(((
112 112  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
113 -)))
114 114  
115 115  [[image:https://wiki.dragino.com/images/thumb/9/9a/US915_FRE_BAND-2.png/600px-US915_FRE_BAND-2.png||height="288" width="600"]]
116 116  
117 -(((
118 118  TTN FREQUENCY PLAN
119 -)))
120 120  
121 -(((
122 122  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
123 -)))
124 124  
125 125  
126 126  = 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
... ... @@ -131,40 +131,18 @@
131 131  * **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
132 132  * **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
133 133  
134 -(((
135 135  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
136 -)))
137 137  
138 -(((
139 -
140 -)))
141 -
142 -(((
143 143  Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
144 -)))
145 145  
146 146  
147 147  = 4. Transmision on ABP Mode =
148 148  
149 -(((
150 150  In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
151 -)))
152 152  
153 -(((
154 -
155 -)))
156 -
157 -(((
158 158  So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
159 -)))
160 160  
161 -(((
162 -
163 -)))
164 -
165 -(((
166 166  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
167 -)))
168 168  
169 169  [[~[~[image:https://wiki.dragino.com/images/thumb/1/19/ABP_Issue-1.jpg/600px-ABP_Issue-1.jpg~|~|height="340" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:ABP_Issue-1.jpg]]
170 170  
... ... @@ -177,9 +177,7 @@
177 177  
178 178  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
179 179  
180 -(((
181 181  Depends on Class A or Class C, the receive windows will be a little difference,
182 -)))
183 183  
184 184  [[image:https://wiki.dragino.com/images/thumb/1/1a/Downstream_LoRaWAN-1.png/600px-Downstream_LoRaWAN-1.png||height="590" width="600"]]
185 185  
... ... @@ -195,112 +195,95 @@
195 195  
196 196  == 5.2 See Debug Info ==
197 197  
198 -(((
199 199  **For LoRaWAN Server**
200 -)))
201 201  
202 -(((
203 203  We can check if there is downlink message for this end node, use TTN for example:
204 -)))
205 205  
206 -(((
207 207  Configure a downstream to the end device
208 -)))
209 209  
210 210  [[image:https://wiki.dragino.com/images/thumb/8/82/Downstream_debug_1.png/600px-Downstream_debug_1.png||height="217" width="600"]]
211 211  
212 -(((
213 213  Set a downstream in TTN and see it is sent
214 -)))
215 215  
216 216  
217 -(((
218 218  This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
219 -)))
220 220  
221 221  [[image:https://wiki.dragino.com/images/thumb/d/dc/Downstream_debug_2.png/600px-Downstream_debug_2.png||height="245" width="600"]]
222 222  
223 -(((
224 224  Gateway Traffic can see this downstream info
225 -)))
226 226  
227 227  
228 -(((
229 229  **For LoRaWAN Gateway**
230 -)))
231 231  
232 -(((
233 233  When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below:
234 -)))
235 235  
236 236  [[image:https://wiki.dragino.com/images/thumb/2/21/Downstream_debug_3.png/600px-Downstream_debug_3.png||height="195" width="600"]]
237 237  
238 -(((
239 239  Gateway Sent out this packet
240 -)))
241 241  
242 242  
243 -(((
244 244  **For End Node**
245 -)))
246 246  
247 247  we can use AT Command (AT+CFG) to check the RX1 configure and RX2 configure. as below:
248 248  
249 249  (% class="box infomessage" %)
250 250  (((
251 - AT+RX2FQ=869525000 ~-~--> The RX2 Window frequency
177 +AT+RX2FQ=869525000 ~-~--> The RX2 Window frequency
252 252  )))
253 253  
254 254  (% class="box infomessage" %)
255 255  (((
256 - AT+RX2DR=3 ~-~--> The RX2 DataRate
182 +AT+RX2DR=3 ~-~--> The RX2 DataRate
257 257  )))
258 258  
259 259  (% class="box infomessage" %)
260 260  (((
261 - AT+RX1DL=1000 ~-~--> Receive Delay 1
187 +AT+RX1DL=1000 ~-~--> Receive Delay 1
262 262  )))
263 263  
264 264  (% class="box infomessage" %)
265 265  (((
266 - AT+RX2DL=2000 ~-~--> Receive Delay 2
192 +AT+RX2DL=2000 ~-~--> Receive Delay 2
267 267  )))
268 268  
269 269  (((
270 -**when the device running, we can see below info:**
271 -)))
272 -
196 +{{info}}
197 +(% class="box infomessage" %)
273 273  (((
274 -
199 +AT+RX2FQ=869525000     ~-~--> The RX2 Window frequency
200 +AT+RX2DR=3  ~-~--> The RX2 DataRate
201 +AT+RX1DL=1000  ~-~--> Receive Delay 1
202 +AT+RX2DL=2000  ~-~--> Receive Delay 2
275 275  )))
204 +{{/info}}
276 276  
277 -{{{ [12502]***** UpLinkCounter= 0 *****
278 - [12503]TX on freq 868500000 Hz at DR 0
279 - [13992]txDone
280 - [15022]RX on freq 868500000 Hz at DR 0 --> RX1 window open at frequency: 868500000, DR0, after 15022-13992= 1030ms of txdone
281 - [15222]rxTimeOut --> no packet arrive in RX1 window. (duration: 200ms)
282 - [15987]RX on freq 869525000 Hz at DR 3 --> RX2 window open at frequency: 869525000, DR3, after 15987-13992= 1995ms of txdone
283 - [16027]rxTimeOut --> no packet arrive in RX2 window. (duration: 40 ms)}}}
284 -
285 -(((
286 286  
287 287  )))
288 288  
289 -(((
290 -**Another message:**
291 -)))
209 +when the device running, we can see below info:
292 292  
293 -{{{ [12502]***** UpLinkCounter= 0 *****
294 - [12503]TX on freq 868100000 Hz at DR 0
295 - [13992]txDone
296 - [15022]RX on freq 868100000 Hz at DR 0
297 - [15222]rxTimeOut
298 - [15987]RX on freq 869525000 Hz at DR 3
299 - [16185]rxDone --> We have got the downstream packet.
300 - Rssi= -64
301 - Receive data
302 - 1:0012345678}}}
211 +{{{[12502]***** UpLinkCounter= 0 *****
212 +[12503]TX on freq 868500000 Hz at DR 0
213 +[13992]txDone
214 +[15022]RX on freq 868500000 Hz at DR 0 --> RX1 window open at frequency: 868500000, DR0, after 15022-13992= 1030ms of txdone
215 +[15222]rxTimeOut --> no packet arrive in RX1 window. (duration: 200ms)
216 +[15987]RX on freq 869525000 Hz at DR 3 --> RX2 window open at frequency: 869525000, DR3, after 15987-13992= 1995ms of txdone
217 +[16027]rxTimeOut --> no packet arrive in RX2 window. (duration: 40 ms)
218 +}}}
303 303  
220 +{{{Another message:
221 +[12502]***** UpLinkCounter= 0 *****
222 +[12503]TX on freq 868100000 Hz at DR 0
223 +[13992]txDone
224 +[15022]RX on freq 868100000 Hz at DR 0
225 +[15222]rxTimeOut
226 +[15987]RX on freq 869525000 Hz at DR 3
227 +[16185]rxDone --> We have got the downstream packet.
228 +Rssi= -64
229 +Receive data
230 +1:0012345678
231 +}}}
232 +
304 304  == 5.3 If problem doesn’t solve ==
305 305  
306 306  **If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
... ... @@ -312,27 +312,14 @@
312 312  
313 313  = 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
314 314  
315 -(((
316 316  In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
317 -)))
318 318  
319 -(((
320 -
321 -)))
322 -
323 -(((
324 324  So if the LoRaWAN server is an AS923 server which ask the gateway to transmit at 923.2Mhz frequency, but the gateway is IN868 frequency band (support 865~~867Mhz to transmit). In the gateway log it will show something like below:
325 -)))
326 326  
327 -{{{Sat Nov 21 08:04:17 2020 daemon.info lora_pkt_fwd[1680]: ERROR~ Packet REJECTED, unsupported frequency - 923200000 (min:865000000,max:867000000)}}}
248 +{{{Sat Nov 21 08:04:17 2020 daemon.info lora_pkt_fwd[1680]: ERROR~ Packet REJECTED, unsupported frequency - 923200000 (min:865000000,max:867000000)
249 +}}}
328 328  
329 -(((
330 -
331 -)))
332 -
333 -(((
334 334  In this case, please double check the gateway frequency and the server frequency band.
335 -)))
336 336  
337 337  
338 338  = 7. Decrypt a LoRaWAN Packet =
... ... @@ -376,9 +376,7 @@
376 376  
377 377  AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
378 378  
379 -(((
380 380  [[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
381 -)))
382 382  
383 383  [[image:https://wiki.dragino.com/images/7/77/Decrypt_a_LoRaWAN_Packet4.png||alt="Decrypt a LoRaWAN Packet4.png" height="390" width="558"]]
384 384  
... ... @@ -391,58 +391,32 @@
391 391  
392 392  = 9. Why do I see a "MIC Mismatch" error message from the server? =
393 393  
394 -(((
395 395  1)If the user receives a "MIC Mismatch" message after registering the node on the server.
396 -)))
397 397  
398 -(((
399 399  It is likely that the user filled in the wrong APPKEY when registering the node. Many users fill in "APPSKEY".
400 -)))
401 401  
402 -* (((
403 -Please note the distinction between "APPKEY" and "APPSKEY".
404 -)))
312 +* Please note the distinction between "APPKEY" and "APPSKEY".
405 405  
406 -(((
407 407  2)If the node works on the server for a period of time, the device stops working and receives a "MIC Mismatch" message.
408 -)))
409 409  
410 -(((
411 411  The user needs a USB-TTL adapter to connect the serial port to modify the node APPKEY.
412 -)))
413 413  
414 -* (((
415 -If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
416 -)))
318 +* If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
417 417  
418 418  = 10. Why i got the payload only with "0x00" or "AA~=~="? =
419 419  
420 -* (((
421 -If you are using US915, AU915 and AS923 frequencies.This is normal phenomenon.
422 -)))
322 +* If you are using US915, AU915 and AS923 frequencies.This is normal phenomenon.
423 423  
424 -(((
425 425  When using the frequency mentioned above, the server sometimes adjusts the rate of the node, because the node defaults to the adaptive rate.
426 -)))
427 427  
428 -(((
429 429  When the server adjusts your node rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the node,
430 -)))
431 431  
432 -(((
433 433  and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit,
434 -)))
435 435  
436 -(((
437 437  so it will send a normal uplink packet, and an additional 00 data packet.
438 -)))
439 439  
440 -* (((
441 -Solution: Use the decoder to filter out this 00 packet.
442 -)))
443 -* (((
444 -Some node decoders may not have filtering function, or you need decoders of other servers and formats. Please send an email to david.huang@dragino.cc
445 -)))
332 +* Solution: Use the decoder to filter out this 00 packet.
333 +* Some node decoders may not have filtering function, or you need decoders of other servers and formats. Please send an email to david.huang@dragino.cc
446 446  
447 447  (% class="wikigeneratedid" id="H" %)
448 448  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0