Changes for page LoRaWAN Communication Debug
Last modified by Edwin Chen on 2025/01/29 20:30
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -60,39 +60,17 @@ 60 60 61 61 = 2. Notice of US915/CN470/AU915 Frequency band = 62 62 63 -((( 64 64 If user has problem to work with lorawan server in band US915/AU915/CN470, he can check: 65 -))) 66 66 67 -* ((( 68 -What **sub-band** the server support ? 69 -))) 70 -* ((( 71 -What is the **sub-band** the gateway support ? 72 -))) 73 -* ((( 74 -What is the **sub-band** the end node is using ? 75 -))) 65 +* What **sub-band** the server support ? 66 +* What is the **sub-band** the gateway support ? 67 +* What is the **sub-band** the end node is using ? 76 76 77 -((( 78 78 All of above should match so End Node can properly Join the server and don't have packet lost. 79 -))) 80 80 81 -((( 82 - 83 -))) 84 - 85 -((( 86 86 In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support. 87 -))) 88 88 89 -((( 90 - 91 -))) 92 - 93 -((( 94 94 Here are the freuqency tables for these bands as reference: 95 -))) 96 96 97 97 [[image:https://wiki.dragino.com/images/thumb/3/3f/US915_FRE_BAND-1.png/600px-US915_FRE_BAND-1.png||height="170" width="600"]] 98 98 ... ... @@ -104,23 +104,15 @@ 104 104 105 105 [[image:https://wiki.dragino.com/images/thumb/3/3a/CN470_FRE_BAND-1.png/600px-CN470_FRE_BAND-1.png||height="205" width="600"]] 106 106 107 -((( 108 108 CN470 Channels 109 -))) 110 110 111 -((( 112 112 If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server. 113 -))) 114 114 115 115 [[image:https://wiki.dragino.com/images/thumb/9/9a/US915_FRE_BAND-2.png/600px-US915_FRE_BAND-2.png||height="288" width="600"]] 116 116 117 -((( 118 118 TTN FREQUENCY PLAN 119 -))) 120 120 121 -((( 122 122 In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. ) 123 -))) 124 124 125 125 126 126 = 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good = ... ... @@ -131,40 +131,18 @@ 131 131 * **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors. 132 132 * **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml. 133 133 134 -((( 135 135 When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data. 136 -))) 137 137 138 -((( 139 - 140 -))) 141 - 142 -((( 143 143 Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success. 144 -))) 145 145 146 146 147 147 = 4. Transmision on ABP Mode = 148 148 149 -((( 150 150 In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server. 151 -))) 152 152 153 -((( 154 - 155 -))) 156 - 157 -((( 158 158 So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue. 159 -))) 160 160 161 -((( 162 - 163 -))) 164 - 165 -((( 166 166 To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page. 167 -))) 168 168 169 169 [[~[~[image:https://wiki.dragino.com/images/thumb/1/19/ABP_Issue-1.jpg/600px-ABP_Issue-1.jpg~|~|height="340" width="600"~]~]>>url:https://wiki.dragino.com/index.php/File:ABP_Issue-1.jpg]] 170 170 ... ... @@ -177,9 +177,7 @@ 177 177 178 178 LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it. 179 179 180 -((( 181 181 Depends on Class A or Class C, the receive windows will be a little difference, 182 -))) 183 183 184 184 [[image:https://wiki.dragino.com/images/thumb/1/1a/Downstream_LoRaWAN-1.png/600px-Downstream_LoRaWAN-1.png||height="590" width="600"]] 185 185 ... ... @@ -206,9 +206,7 @@ 206 206 Set a downstream in TTN and see it is sent 207 207 208 208 209 -((( 210 210 This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3 211 -))) 212 212 213 213 [[image:https://wiki.dragino.com/images/thumb/d/dc/Downstream_debug_2.png/600px-Downstream_debug_2.png||height="245" width="600"]] 214 214 ... ... @@ -217,9 +217,7 @@ 217 217 218 218 **For LoRaWAN Gateway** 219 219 220 -((( 221 221 When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below: 222 -))) 223 223 224 224 [[image:https://wiki.dragino.com/images/thumb/2/21/Downstream_debug_3.png/600px-Downstream_debug_3.png||height="195" width="600"]] 225 225 ... ... @@ -232,51 +232,47 @@ 232 232 233 233 (% class="box infomessage" %) 234 234 ((( 235 - 177 +AT+RX2FQ=869525000 ~-~--> The RX2 Window frequency 236 236 ))) 237 237 238 238 (% class="box infomessage" %) 239 239 ((( 240 - 182 +AT+RX2DR=3 ~-~--> The RX2 DataRate 241 241 ))) 242 242 243 243 (% class="box infomessage" %) 244 244 ((( 245 - 187 +AT+RX1DL=1000 ~-~--> Receive Delay 1 246 246 ))) 247 247 248 248 (% class="box infomessage" %) 249 249 ((( 250 - 192 +AT+RX2DL=2000 ~-~--> Receive Delay 2 251 251 ))) 252 252 253 253 when the device running, we can see below info: 254 254 255 -(% class="box" %) 256 -((( 257 - [12502]~*~*~*~** UpLinkCounter= 0 ~*~*~*~** 258 - [12503]TX on freq 868500000 Hz at DR 0 259 - [13992]txDone 260 - [15022]RX on freq 868500000 Hz at DR 0 ~-~-> RX1 window open at frequency: 868500000, DR0, after 15022-13992= 1030ms of txdone 261 - [15222]rxTimeOut ~-~-> no packet arrive in RX1 window. (duration: 200ms) 262 - [15987]RX on freq 869525000 Hz at DR 3 ~-~-> RX2 window open at frequency: 869525000, DR3, after 15987-13992= 1995ms of txdone 263 - [16027]rxTimeOut ~-~-> no packet arrive in RX2 window. (duration: 40 ms) 264 -))) 197 +{{{[12502]***** UpLinkCounter= 0 ***** 198 +[12503]TX on freq 868500000 Hz at DR 0 199 +[13992]txDone 200 +[15022]RX on freq 868500000 Hz at DR 0 --> RX1 window open at frequency: 868500000, DR0, after 15022-13992= 1030ms of txdone 201 +[15222]rxTimeOut --> no packet arrive in RX1 window. (duration: 200ms) 202 +[15987]RX on freq 869525000 Hz at DR 3 --> RX2 window open at frequency: 869525000, DR3, after 15987-13992= 1995ms of txdone 203 +[16027]rxTimeOut --> no packet arrive in RX2 window. (duration: 40 ms) 204 +}}} 265 265 266 -(% class="box" %) 267 -((( 268 - Another message: 269 - [12502]~*~*~*~** UpLinkCounter= 0 ~*~*~*~** 270 - [12503]TX on freq 868100000 Hz at DR 0 271 - [13992]txDone 272 - [15022]RX on freq 868100000 Hz at DR 0 273 - [15222]rxTimeOut 274 - [15987]RX on freq 869525000 Hz at DR 3 275 - [16185]rxDone ~-~-> We have got the downstream packet. 276 - Rssi= -64 277 - Receive data 278 - 1:0012345678 279 -))) 206 +{{{Another message: 207 +[12502]***** UpLinkCounter= 0 ***** 208 +[12503]TX on freq 868100000 Hz at DR 0 209 +[13992]txDone 210 +[15022]RX on freq 868100000 Hz at DR 0 211 +[15222]rxTimeOut 212 +[15987]RX on freq 869525000 Hz at DR 3 213 +[16185]rxDone --> We have got the downstream packet. 214 +Rssi= -64 215 +Receive data 216 +1:0012345678 217 +}}} 280 280 281 281 == 5.3 If problem doesn’t solve == 282 282