Last modified by Xiaoling on 2025/05/05 08:51

From version 37.1
edited by Edwin Chen
on 2022/12/15 22:33
Change comment: There is no comment for this version
To version 99.1
edited by Bei Jinggeng
on 2025/04/29 12:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Bei
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  
6 6  
7 -= 1. OTAA Join Process Debug =
7 += 1. Join process page check =
8 8  
9 9  
10 10  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
... ... @@ -11,76 +11,79 @@
11 11  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
12 12  
13 13  * End node console to show the Join freuqency and DR. (If possible)
14 +
14 14  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible)
16 +
15 15  * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible)
18 +
16 16  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
20 +
17 17  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
18 18  
19 -
20 20  (% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
21 21  
22 22  * If the device is sending join request to server?
26 +
23 23  * What frequency the device is sending?
24 24  
25 -[[image:image-20220526164956-15.png]]
29 +[[image:image-20240129142147-2.png||height="736" width="964"]]
26 26  
27 -Console Output from End device to see the transmit frequency
31 +Console Output from End device to see the transmit frequency.
28 28  
29 29  
30 -
31 31  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
32 32  
33 33  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
37 +
34 34  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
35 35  
36 -[[image:image-20220526163608-2.png]]
40 +[[image:image-20240129151608-6.jpeg||height="725" width="1256"]]
37 37  
38 38  Console Output from Gateway to see packets between end node and server.
39 39  
40 40  
45 +(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
41 41  
42 -(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
47 +* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
43 43  
44 -* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
45 -* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
49 +* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
50 +
46 46  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
47 47  
48 -[[image:image-20220526163633-3.png]]
53 +[[image:image-20240129150821-5.jpeg||height="522" width="1264"]]
49 49  
50 -The Traffic for the End node in the server, use TTN as example
55 +The Traffic for the End node in the server, use TTN as example.
51 51  
52 52  
53 -
54 54  (% style="color:blue" %)**4. Data Page in LoRaWAN server**
55 55  
56 56  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
57 57  
58 -[[image:image-20220526163704-4.png]]
62 +[[image:image-20240129142557-3.png||height="488" width="1267"]]
59 59  
60 60  The data for the end device set in server
61 61  
62 62  
63 -[[image:image-20220526163732-5.png]]
67 +[[image:image-20240129142631-4.png||height="637" width="1256"]]
64 64  
65 -Check if OTAA Keys match the keys in device
69 +Check if OTAA Keys match the keys in device.
66 66  
67 67  
68 -
69 69  = 2. Notice of US915/CN470/AU915 Frequency band =
70 70  
71 71  
72 72  (((
73 -If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
76 +If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
74 74  )))
75 75  
76 76  * (((
77 -What **sub-band** the server support ?
80 +What **sub-band** the server support?
78 78  )))
79 79  * (((
80 -What is the **sub-band** the gateway support ?
83 +What is the **sub-band** the gateway support?
81 81  )))
82 82  * (((
83 -What is the **sub-band** the end node is using ?
86 +What is the **sub-band** the end node is using?
84 84  )))
85 85  
86 86  (((
... ... @@ -92,7 +92,7 @@
92 92  )))
93 93  
94 94  (((
95 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
98 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
96 96  )))
97 97  
98 98  (((
... ... @@ -100,7 +100,7 @@
100 100  )))
101 101  
102 102  (((
103 -Here are the freuqency tables for these bands as reference:
106 +Here are the frequency tables for these bands as reference:
104 104  )))
105 105  
106 106  [[image:image-20220526163801-6.png]]
... ... @@ -125,12 +125,12 @@
125 125  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
126 126  )))
127 127  
128 -[[image:image-20220526164052-9.png]]
131 +[[image:image-20240123151225-3.png||height="434" width="902"]]
129 129  
130 130  (((
131 131  TTN FREQUENCY PLAN
132 132  
133 -
136 +(% style="display:none" %) (%%)
134 134  )))
135 135  
136 136  (((
... ... @@ -137,24 +137,23 @@
137 137  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
138 138  )))
139 139  
143 +(% style="display:none" %) (%%)
140 140  
145 += 3. Why I see data lost/ is not periodically uplink? Even the signal strength is good =
141 141  
142 -= 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
143 143  
144 -
145 145  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
146 146  
147 -* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
148 -* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
149 -* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
150 +* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
150 150  
152 +* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
153 +
154 +* (% style="color:blue" %)**LoRaWAN server**  (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
155 +
151 151  (((
152 152  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
153 153  )))
154 154  
155 -(((
156 -
157 -)))
158 158  
159 159  (((
160 160  Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
... ... @@ -161,45 +161,145 @@
161 161  )))
162 162  
163 163  
166 += 4. Why i see packet lost =
164 164  
165 -= 4. Transmision on ABP Mode =
168 +== **1. Signal problem** ==
166 166  
167 167  
168 -(((
169 -In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
170 -)))
171 +1)  (% style="color:blue" %)**ADR automatic adjustment** (%%)
171 171  
172 -(((
173 +Reason:
174 +
175 +When the signal is at a critical value, the server may configure the node to adjust to a lower power DR.
176 +At this time, the server is at risk of losing uplink.
177 +
178 +
179 +Solution:
180 +
181 +Users can manually fix the DR value.
173 173  
183 +
184 +(% style="color:red" %)
185 +**Notice:**
186 +
187 +* User need to set Adaptive Data Rate(ADR)=0 first. otherwise device will respond to server's ADR command and change the DR according to server auto-adjustment.
188 +
189 +* Data Rate specifies Spreading Factor. The mapping varies in different frequency bands. User can check this link for detail. [[rp2-1.0.3-lorawan-regional-parameters.pdf>>https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/]]
190 +
191 +(% style="color:blue" %)**AT Command: AT+DR**
192 +
193 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:409px" %)
194 +|(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:147px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:100px" %)**Response**
195 +|(% style="width:156px" %)AT+DR=?|(% style="width:147px" %)Get the Data Rate.|(% style="width:100px" %)5(((
196 +OK
174 174  )))
198 +|(% style="width:156px" %)AT+DR=2|(% style="width:147px" %)Set the Data Rate.|(% style="width:100px" %)OK(((
199 +
200 +)))
175 175  
202 +(% style="color:blue" %)**Downlink Command: 0x2200aaFF**
203 +
204 +If the downlink payload=220001FF, it means setting the data rate to 1, while type code is 22 00 aa FF.
205 +
206 +* **Example 1**: Downlink Payload: **220001FF**  ~/~/ Set AT+DR=1.
207 +
208 +* **Example 2**: Downlink Payload: **220000FF**  ~/~/ Set AT+DR=0.
209 +
210 +(% style="display:none" %) (%%)
211 +
212 +
213 +2)  (% style="color:blue" %)**Node antenna problem**
214 +
215 +Reason:
216 +
217 +Node antenna is loose
218 +
219 +
220 +Solution:
221 +
222 +Please check whether the antenna interface and module interface are detached
223 +
224 +[[image:image-20250429114526-1.png||height="429" width="303"]]
225 +
226 +
227 +
228 +3) (% style="color:blue" %)**Gateway antenna problem**
229 +
230 +Reason:
231 +Gateway uses antenna with wrong frequency band
232 +
233 +For example: 868-band gateway uses antenna with 915-band, which will cause the signal to be greatly reduced
234 +
235 +
236 +Solution:
237 +
238 +Please check whether the silk screen on the antenna conflicts with the frequency you set.
239 +
240 +[[image:image-20250429115124-2.png]][[image:image-20250429115159-3.png||height="550" width="224"]]
241 +
242 +
243 +4) (% style="color:blue" %)**Gateway module problem**
244 +
245 +Reason:
246 +
247 +Gateway uses module with wrong frequency band
248 +For example: 868-band gateway uses module with 915-band, which will cause the signal to be greatly reduced
249 +
250 +
251 +Solution:
252 +
253 +Please check whether the silkscreen of the module conflicts with the frequency you set.
254 +
255 +[[image:image-20250429115951-5.png||height="288" width="384"]][[image:image-20250429120030-6.png||height="284" width="378"]]
256 +
257 +
258 +== **2. Frequency point problem** ==
259 +
260 +The frequency point of the gateway or server is wrong or missing.
261 +
262 +
263 +== **3. Frequency band problem** ==
264 +
265 +When there are multiple gateways, the node cannot lock the frequency band.
266 +
267 +
268 +
269 += 5. Transmision on ABP Mode =
270 +
271 +
176 176  (((
177 -So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
273 +In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
178 178  )))
179 179  
180 180  (((
181 -
277 +So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
182 182  )))
183 183  
184 184  (((
185 185  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
282 +
283 +[[image:image-20240123161737-4.png||height="395" width="763"]]
186 186  )))
187 187  
188 -[[image:image-20220526164508-10.png]]
286 +[[image:image-20240123161853-6.png||height="599" width="771"]]
189 189  
190 190  Disable Frame Counter Check in ABP Mode
191 191  
192 192  
291 += 6. Downstream Debug =
193 193  
194 -= 5. Downstream Debug =
293 +== 6.1 How it work ==
195 195  
196 -== 5.1 How it work ==
197 197  
198 -
199 199  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
200 200  
201 201  (((
202 -Depends on Class A or Class C, the receive windows will be a little difference,
299 +Depends on Class A or Class C, the receive windows will be a little difference. The main difference between Class A and Class C:
300 +
301 +* **Class A** : Suitable for Battery powered end node. Class A will save a lot of power but it can only receive downlink after each uplink
302 +* **Class C**: End node can receive downlink immediately but have higher power consumption.
303 +
304 +
203 203  )))
204 204  
205 205  [[image:image-20220531161828-1.png]]
... ... @@ -210,15 +210,18 @@
210 210  Below are the requirement for the End Device to receive the packets.
211 211  
212 212  * The End Device must open the receive windows: RX1 or RX2
315 +
213 213  * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node.
317 +
214 214  * This downstream packet must arrive to the end node while RX1 or RX2 is open.
319 +
215 215  * This packet must match the frequency of the RX1 or RX2 window.
321 +
216 216  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
217 217  
324 +== 6.2 See Debug Info ==
218 218  
219 -== 5.2 See Debug Info ==
220 220  
221 -
222 222  (((
223 223  (% style="color:blue" %)**For LoRaWAN Server**
224 224  )))
... ... @@ -228,24 +228,27 @@
228 228  )))
229 229  
230 230  (((
231 -Configure a downstream to the end device
336 +Configure a downlink to the end device
337 +
338 +[[image:image-20240129152412-8.png||height="486" width="1206"]]
232 232  )))
233 233  
234 -[[image:image-20220526164623-12.png]]
235 235  
236 236  (((
237 237  Set a downstream in TTN and see it is sent
238 238  )))
239 239  
346 +(% style="color:red" %)**Note: After the downlink command is successfully sent from the platform to the node, the downlink command is executed only after the platform receives the next uplink package from the node.**
240 240  
348 +
241 241  (((
242 -This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
350 +This downlink info will then pass to the gateway downlink list. and the DR which is used (SF7BW500) in US915 is DR5.
243 243  )))
244 244  
245 -[[image:image-20220526164650-13.png]]
353 +[[image:image-20240129152049-7.png||height="463" width="1166"]]
246 246  
247 247  (((
248 -Gateway Traffic can see this downstream info
356 +Gateway Traffic can see this downlink info
249 249  )))
250 250  
251 251  
... ... @@ -255,10 +255,10 @@
255 255  )))
256 256  
257 257  (((
258 -When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below:
366 +When the downlink packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragino Gateway, this can be checked by running "logread -f" in the SSH console. and see below:
259 259  )))
260 260  
261 -[[image:image-20220526164734-14.png]]
369 +[[image:image-20240129154321-9.png]]
262 262  
263 263  (((
264 264  Gateway Sent out this packet
... ... @@ -275,13 +275,13 @@
275 275  )))
276 276  
277 277  (((
278 -(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
279 -(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
280 -(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
281 -(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
386 +* (% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
282 282  
388 +* (% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
283 283  
284 -
390 +* (% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
391 +
392 +* (% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
285 285  )))
286 286  
287 287  (((
... ... @@ -318,23 +318,24 @@
318 318   1:0012345678}}}
319 319  
320 320  
429 +== 6.3 If problem doesn't solve ==
321 321  
322 -== 5.3 If problem doesn't solve ==
323 323  
324 -
325 325  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
326 326  
327 327  * End node console to show the transmit freuqency and DR.
435 +
328 328  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server.
437 +
329 329  * Gateway traffic (from server UI) to shows the data exchange between gateway and server.
439 +
330 330  * End Node traffic (from server UI) to shows end node activity in server.
331 331  
442 += 7. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
332 332  
333 -= 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
334 334  
335 -
336 336  (((
337 -In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
446 +In LoRaWAN, the gateway will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
338 338  )))
339 339  
340 340  (((
... ... @@ -356,65 +356,85 @@
356 356  )))
357 357  
358 358  
468 += 8. Decrypt a LoRaWAN Packet =
359 359  
360 -= 7. Decrypt a LoRaWAN Packet =
361 361  
471 +(% style="color:blue" %)**1. LHT65N End device configure:**
362 362  
363 -(% style="color:blue" %)**1. LHT65 End device configure:**
364 -
365 365  **Change to ABP Mode:  AT+NJM=0**
366 -**Change to fix frequency:  AT+CHS=904900000**
367 -**Change to fix DR:  AT+DR=0**
368 368  
475 +**Change to fix frequency:  ​​​​AT+CHE=1**
369 369  
370 -[[image:image-20220526165525-16.png]]
371 371  
478 +**AT+CFG(Print configuration):**
372 372  
480 +[[image:image-20240129170603-7.png||height="697" width="545"]][[image:image-20240129163741-3.png||height="694" width="565"]]
373 373  
374 -(% style="color:blue" %)**2. In LG02 , configure to receive above message**
375 375  
376 -[[image:image-20220526165612-17.png]]
377 377  
484 +**Configuration: **
378 378  
379 -In LG02 console, we can see the hex receive are:
486 +[[image:image-20240129164219-4.png||height="612" width="440"]]
380 380  
381 -[[image:image-20220526171112-21.png]]
382 382  
383 383  
490 +(% style="color:blue" %)**2. In LPS8-v2, configure to receive above message**
384 384  
385 -(% style="color:blue" %)**3. Decode the info in web**
492 +[[image:image-20240129164326-5.png||height="506" width="1114"]]
386 386  
387 -[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/]]
388 388  
389 -Need these three fields:
495 +In LPS8-v2 console, we can see the Base64 receive are:
390 390  
391 -LoRa packet hex format: 40c1190126800100024926272bf18bbb6341584e27e23245 (from LG02)
497 +[[image:image-20240129170137-6.png||height="459" width="1116"]]
392 392  
393 -AT+NWKSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End node Network Session Key)
394 394  
395 -AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
396 396  
501 +(% style="color:blue" %)**3. Decode the info in CMD(Command prompt window)**
397 397  
398 -[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
503 +LoRa packet Base64 format:  QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75 **(from LPS8-v2)**
399 399  
400 -[[image:image-20220526171029-20.png]]
505 +Then the instructions and format parsed in SecureCRT are:  ./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75
401 401  
402 -(((
403 - The FRMPayload is the device payload.
404 -)))
405 405  
508 +**Step1: Open CMD, Enter the gateway IP and port.(ssh root@gateway IP -p 22)**
406 406  
510 +[[image:image-20240129190752-17.png||height="338" width="901"]]
407 407  
408 -= 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
512 +[[image:image-20240129191937-21.png||height="450" width="901"]]
409 409  
410 410  
411 -Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
515 +**Step2: Enter the command to download the LoRa parsing package.(npm install lora-packet)**
412 412  
517 +[[image:image-20240129192239-22.png||height="416" width="902"]]
413 413  
519 +[[image:image-20240129192549-23.png||height="459" width="898"]]
414 414  
415 -= 9. Why do I see a "MIC Mismatch" error message from the server? =
416 416  
522 +**Step3: Parse the gateway raw payload.(./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75)**
417 417  
524 +
525 +
526 +
527 +[[image:image-20240129192908-24.png||height="477" width="907"]]
528 +
529 +
530 +[[image:image-20240129192954-25.png||height="485" width="916"]]
531 +
532 +
533 +
534 +
535 +
536 +
537 +
538 += 9. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
539 +
540 +
541 +Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
542 +
543 +
544 += 10. Why do I see a "MIC Mismatch" error message from the server? =
545 +
546 +
418 418  (((
419 419  1)  If the user receives a "MIC Mismatch" message after registering the node on the server.
420 420  )))
... ... @@ -437,35 +437,56 @@
437 437  
438 438  * (((
439 439  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
569 +)))
440 440  
571 +(% class="wikigeneratedid" %)
572 +3)Wrong Regional Parameters version selected
573 + We generally use versions above 1.0.2
441 441  
575 +(% class="wikigeneratedid" %)
576 +[[image:image-20230322163227-1.png]]
442 442  
443 -
444 -)))
578 +(% class="wikigeneratedid" %)
579 +4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
445 445  
446 -= 10. Why i got the payload only with "0x00" or "AA~=~="? =
447 447  
582 += 11. Why I got the payload only with "0x00" or "AA~=~="? =
448 448  
449 -**Why this happen:**
450 450  
451 -For US915, AU915 or AS923 frequencies.It is possible because: .
585 +(% style="color:blue" %)**Why sensor sends 0x00?**
452 452  
453 -When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
587 +For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
454 454  
455 -When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
589 +**Possible Case 1**:
456 456  
591 +Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
457 457  
458 -**How to solve:**
459 459  
460 -Solution: Use the decoder to filter out this 0x00 packet.
594 +**Possible Case 2:**
461 461  
462 -Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
596 +For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
463 463  
464 464  
599 +(% style="color:blue" %)**How to solve:**
465 465  
466 -= 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
601 +Solution:
467 467  
603 +~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
468 468  
605 +2. Data rate changed from DR3 to DR5, increasing upload byte length
606 +AT+ADR=0
607 +AT+DR=3
608 +
609 +Downlink:
610 +
611 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
612 +
613 +Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
614 +
615 +
616 += 12. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
617 +
618 +
469 469  (((
470 470  It is possible the keys is erased during upgrading of firmware. and the console output shows below after AT+CFG
471 471  )))
... ... @@ -524,8 +524,7 @@
524 524  (Any combination of 16 bit codes can be used)
525 525  
526 526  
527 -
528 -= 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? =
677 += 13. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
529 529  )))
530 530  
531 531  
... ... @@ -532,30 +532,27 @@
532 532  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
533 533  
534 534  
535 -= 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
684 += 14. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
536 536  
537 537  
538 -In US915, AU915 or CN470 frequency band, there are 8 subbands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Subband 2 in TTN. The gateway also configured to Subband 2 and cover eight channels in this subband. If the end node transfer data in Subband 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other subbands, for example subband 1, the packet won't arrive both gateway or LoRaWAN server.
687 +In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
539 539  
540 540  
541 -In Dragino Sensors old version firmware (before early 2022), the subband is fixed the subband to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
690 +In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
542 542  
543 -We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, In this case, In this case, the end node can support LoRaWAN servers with different subbands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
692 +We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
544 544  
545 545  * (((
546 -Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that subband
695 +Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
547 547  )))
548 548  * (((
549 -Use the Join successful sub-band if the server doesn't include subband info in the OTAA Join Accept message ( TTN v2 doesn't include)
698 +Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
550 550  )))
551 551  
552 -This change will make the activation time a littler longer but make sure the device can be used in any subband.
701 +This change will make the activation time a little longer but make sure the device can be used in any sub-band.
553 553  
554 554  
555 -Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the subband he use.
704 +Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
556 556  
557 557  
558 558  [[image:image-20221215223215-1.png||height="584" width="1280"]]
559 -
560 -(% class="wikigeneratedid" %)
561 -
image-20230322163227-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +43.1 KB
Content
image-20240123150720-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +108.0 KB
Content
image-20240129142110-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +126.9 KB
Content
image-20240129142147-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +116.1 KB
Content
image-20240129142557-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +125.7 KB
Content
image-20240129142631-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +189.0 KB
Content
image-20240129150821-5.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +129.2 KB
Content
image-20240129151608-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +318.1 KB
Content
image-20240129152049-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +148.3 KB
Content
image-20240129152412-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +133.6 KB
Content
image-20240129154321-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +99.5 KB
Content
image-20240129163533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20240129163714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.2 KB
Content
image-20240129163741-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +36.5 KB
Content
image-20240129164219-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +30.3 KB
Content
image-20240129164326-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +80.8 KB
Content
image-20240129170137-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +115.2 KB
Content
image-20240129170603-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.2 KB
Content
image-20240129172956-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +54.2 KB
Content
image-20240129173810-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
image-20240129173932-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +73.6 KB
Content
image-20240129174125-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +77.0 KB
Content
image-20240129174549-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.6 KB
Content
image-20240129174717-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.6 KB
Content
image-20240129174948-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.1 KB
Content
image-20240129175037-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
image-20240129190344-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +17.2 KB
Content
image-20240129190752-17.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.9 KB
Content
image-20240129190840-18.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +17.2 KB
Content
image-20240129191130-19.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +81.7 KB
Content
image-20240129191315-20.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +50.0 KB
Content
image-20240129191937-21.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +71.8 KB
Content
image-20240129192239-22.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +77.5 KB
Content
image-20240129192549-23.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +59.5 KB
Content
image-20240129192908-24.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20240129192954-25.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.4 KB
Content
image-20250429114526-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +3.2 MB
Content
image-20250429115124-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +193.2 KB
Content
image-20250429115159-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1014.1 KB
Content
image-20250429115942-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +435.8 KB
Content
image-20250429115951-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content
image-20250429120030-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content