Last modified by Xiaoling on 2025/05/05 08:51

From version 35.2
edited by Xiaoling
on 2022/10/20 09:31
Change comment: There is no comment for this version
To version 101.1
edited by Bei Jinggeng
on 2025/04/29 13:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  
6 6  
7 -= 1. OTAA Join Process Debug =
7 += 1. Join process page check =
8 8  
9 9  
10 10  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
... ... @@ -11,77 +11,79 @@
11 11  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
12 12  
13 13  * End node console to show the Join freuqency and DR. (If possible)
14 +
14 14  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible)
16 +
15 15  * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible)
18 +
16 16  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
20 +
17 17  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
18 18  
19 -
20 -
21 21  (% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
22 22  
23 23  * If the device is sending join request to server?
26 +
24 24  * What frequency the device is sending?
25 25  
26 -[[image:image-20220526164956-15.png]]
29 +[[image:image-20240129142147-2.png||height="736" width="964"]]
27 27  
28 -Console Output from End device to see the transmit frequency
31 +Console Output from End device to see the transmit frequency.
29 29  
30 30  
31 -
32 32  (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
33 33  
34 34  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
37 +
35 35  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
36 36  
37 -[[image:image-20220526163608-2.png]]
40 +[[image:image-20240129151608-6.jpeg||height="725" width="1256"]]
38 38  
39 39  Console Output from Gateway to see packets between end node and server.
40 40  
41 41  
45 +(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server**
42 42  
43 -(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
47 +* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings.
44 44  
45 -* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
46 -* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
49 +* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device.
50 +
47 47  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
48 48  
49 -[[image:image-20220526163633-3.png]]
53 +[[image:image-20240129150821-5.jpeg||height="522" width="1264"]]
50 50  
51 -The Traffic for the End node in the server, use TTN as example
55 +The Traffic for the End node in the server, use TTN as example.
52 52  
53 53  
54 -
55 55  (% style="color:blue" %)**4. Data Page in LoRaWAN server**
56 56  
57 57  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
58 58  
59 -[[image:image-20220526163704-4.png]]
62 +[[image:image-20240129142557-3.png||height="488" width="1267"]]
60 60  
61 61  The data for the end device set in server
62 62  
63 63  
64 -[[image:image-20220526163732-5.png]]
67 +[[image:image-20240129142631-4.png||height="637" width="1256"]]
65 65  
66 -Check if OTAA Keys match the keys in device
69 +Check if OTAA Keys match the keys in device.
67 67  
68 68  
69 -
70 70  = 2. Notice of US915/CN470/AU915 Frequency band =
71 71  
72 72  
73 73  (((
74 -If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
76 +If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check:
75 75  )))
76 76  
77 77  * (((
78 -What **sub-band** the server support ?
80 +What **sub-band** the server support?
79 79  )))
80 80  * (((
81 -What is the **sub-band** the gateway support ?
83 +What is the **sub-band** the gateway support?
82 82  )))
83 83  * (((
84 -What is the **sub-band** the end node is using ?
86 +What is the **sub-band** the end node is using?
85 85  )))
86 86  
87 87  (((
... ... @@ -93,7 +93,7 @@
93 93  )))
94 94  
95 95  (((
96 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn,t support.
98 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support.
97 97  )))
98 98  
99 99  (((
... ... @@ -101,7 +101,7 @@
101 101  )))
102 102  
103 103  (((
104 -Here are the freuqency tables for these bands as reference:
106 +Here are the frequency tables for these bands as reference:
105 105  )))
106 106  
107 107  [[image:image-20220526163801-6.png]]
... ... @@ -126,12 +126,12 @@
126 126  If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server.
127 127  )))
128 128  
129 -[[image:image-20220526164052-9.png]]
131 +[[image:image-20240123151225-3.png||height="434" width="902"]]
130 130  
131 131  (((
132 132  TTN FREQUENCY PLAN
133 133  
134 -
136 +(% style="display:none" %) (%%)
135 135  )))
136 136  
137 137  (((
... ... @@ -138,69 +138,258 @@
138 138  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
139 139  )))
140 140  
143 +(% style="display:none" %) (%%)
141 141  
145 += 3. Why I see data lost/ is not periodically uplink? Even the signal strength is good =
142 142  
143 -= 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
144 144  
145 -
146 146  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
147 147  
148 -* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
149 -* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
150 -* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
150 +* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
151 151  
152 +* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
153 +
154 +* (% style="color:blue" %)**LoRaWAN server**  (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
155 +
152 152  (((
153 153  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
154 154  )))
155 155  
160 +
156 156  (((
162 +Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
163 +)))
164 +
165 +
166 += 4. Why i see packet lost =
167 +
168 +== **1. Signal problem** ==
169 +
170 +
171 +1)  (% style="color:blue" %)**ADR automatic adjustment** (%%)
172 +
173 +Reason:
174 +
175 +When the signal is at a critical value, the server may configure the node to adjust to a lower power DR.
176 +At this time, the server is at risk of losing uplink.
177 +
178 +
179 +Solution:
180 +
181 +Users can manually fix the DR value.
157 157  
183 +
184 +(% style="color:red" %)
185 +**Notice:**
186 +
187 +* User need to set Adaptive Data Rate(ADR)=0 first. otherwise device will respond to server's ADR command and change the DR according to server auto-adjustment.
188 +
189 +* Data Rate specifies Spreading Factor. The mapping varies in different frequency bands. User can check this link for detail. [[rp2-1.0.3-lorawan-regional-parameters.pdf>>https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/]]
190 +
191 +(% style="color:blue" %)**AT Command: AT+DR**
192 +
193 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:409px" %)
194 +|(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:147px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:100px" %)**Response**
195 +|(% style="width:156px" %)AT+DR=?|(% style="width:147px" %)Get the Data Rate.|(% style="width:100px" %)5(((
196 +OK
158 158  )))
198 +|(% style="width:156px" %)AT+DR=2|(% style="width:147px" %)Set the Data Rate.|(% style="width:100px" %)OK(((
199 +
200 +)))
159 159  
202 +(% style="color:blue" %)**Downlink Command: 0x2200aaFF**
203 +
204 +If the downlink payload=220001FF, it means setting the data rate to 1, while type code is 22 00 aa FF.
205 +
206 +* **Example 1**: Downlink Payload: **220001FF**  ~/~/ Set AT+DR=1.
207 +
208 +* **Example 2**: Downlink Payload: **220000FF**  ~/~/ Set AT+DR=0.
209 +
210 +(% style="display:none" %) (%%)
211 +
212 +
213 +2)  (% style="color:blue" %)**Node antenna problem**
214 +
215 +Reason:
216 +
217 +Node antenna is loose
218 +
219 +
220 +Solution:
221 +
222 +Please check whether the antenna interface and module interface are detached
223 +
224 +[[image:image-20250429114526-1.png||height="429" width="303"]]
225 +
226 +
227 +
228 +3) (% style="color:blue" %)**Gateway antenna problem**
229 +
230 +Reason:
231 +Gateway uses antenna with wrong frequency band
232 +
233 +For example: 868-band gateway uses antenna with 915-band, which will cause the signal to be greatly reduced
234 +
235 +
236 +Solution:
237 +
238 +Please check whether the silk screen on the antenna conflicts with the frequency you set.
239 +
240 +[[image:image-20250429115124-2.png]][[image:image-20250429115159-3.png||height="550" width="224"]]
241 +
242 +
243 +4) (% style="color:blue" %)**Gateway module problem**
244 +
245 +Reason:
246 +
247 +Gateway uses module with wrong frequency band
248 +For example: 868-band gateway uses module with 915-band, which will cause the signal to be greatly reduced
249 +
250 +
251 +Solution:
252 +
253 +Please check whether the silkscreen of the module conflicts with the frequency you set.
254 +
255 +[[image:image-20250429115951-5.png||height="288" width="384"]][[image:image-20250429133640-7.png||height="284" width="378"]]
256 +
257 +
258 +== **2. Frequency point problem** ==
259 +
260 +Reason:
261 +
262 +There are multiple frequency configurations in AS923/US915/AU915/CN470.
263 +
264 +The frequency point of the gateway or server is wrong or missing.
265 +
266 +
267 +Solution:
268 +
269 +Users need to check whether the server or gateway configuration is missing or has an incorrect frequency.
270 +
271 +The frequency range used in the dragino node is as follows
272 +
273 +
274 +== **3. Frequency band problem** ==
275 +
276 +Reason:
277 +
278 +When there are multiple gateways, the node cannot lock the frequency band.
279 +
280 +
281 +Solution:
282 +
160 160  (((
161 -Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
284 +By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
162 162  )))
163 163  
287 +(((
288 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
289 +)))
164 164  
291 +(((
292 +
293 +)))
165 165  
166 -= 4. Transmision on ABP Mode =
295 +(((
296 +For example, in (% style="color:blue" %)**US915**(%%) band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
297 +)))
167 167  
299 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627160940-13.png?rev=1.1||alt="image-20220627160940-13.png"]]
168 168  
301 +
169 169  (((
170 -In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
303 +When you use the TTN V3 network, the US915 frequency bands use are:
171 171  )))
172 172  
306 +* (((
307 +903.9 - SF7BW125 to SF10BW125
308 +)))
309 +* (((
310 +904.1 - SF7BW125 to SF10BW125
311 +)))
312 +* (((
313 +904.3 - SF7BW125 to SF10BW125
314 +)))
315 +* (((
316 +904.5 - SF7BW125 to SF10BW125
317 +)))
318 +* (((
319 +904.7 - SF7BW125 to SF10BW125
320 +)))
321 +* (((
322 +904.9 - SF7BW125 to SF10BW125
323 +)))
324 +* (((
325 +905.1 - SF7BW125 to SF10BW125
326 +)))
327 +* (((
328 +905.3 - SF7BW125 to SF10BW125
329 +)))
330 +* (((
331 +904.6 - SF8BW500
332 +)))
333 +
173 173  (((
174 -
335 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN V3 network and uplink data. To solve this issue, you can access the device via the AT commands and run:
175 175  )))
176 176  
177 177  (((
178 -So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
339 +(% style="color:blue" %)**AT+CHE=2**
179 179  )))
180 180  
181 181  (((
343 +(% style="color:blue" %)**ATZ**
344 +)))
345 +
346 +
347 +(((
348 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
349 +)))
350 +
351 +(((
352 +The (% style="color:blue" %)**AU915**(%%) band is similar. Below are the AU915 Uplink Channels.
353 +
354 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627161124-14.png?rev=1.1||alt="image-20220627161124-14.png"]]
355 +
182 182  
183 183  )))
184 184  
359 += 5. Transmision on ABP Mode =
360 +
361 +
185 185  (((
363 +In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
364 +)))
365 +
366 +(((
367 +So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
368 +)))
369 +
370 +(((
186 186  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
372 +
373 +[[image:image-20240123161737-4.png||height="395" width="763"]]
187 187  )))
188 188  
189 -[[image:image-20220526164508-10.png]]
376 +[[image:image-20240123161853-6.png||height="599" width="771"]]
190 190  
191 191  Disable Frame Counter Check in ABP Mode
192 192  
193 193  
381 += 6. Downstream Debug =
194 194  
195 -= 5. Downstream Debug =
383 +== 6.1 How it work ==
196 196  
197 -== 5.1 How it work ==
198 198  
199 -
200 200  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
201 201  
202 202  (((
203 -Depends on Class A or Class C, the receive windows will be a little difference,
389 +Depends on Class A or Class C, the receive windows will be a little difference. The main difference between Class A and Class C:
390 +
391 +* **Class A** : Suitable for Battery powered end node. Class A will save a lot of power but it can only receive downlink after each uplink
392 +* **Class C**: End node can receive downlink immediately but have higher power consumption.
393 +
394 +
204 204  )))
205 205  
206 206  [[image:image-20220531161828-1.png]]
... ... @@ -211,16 +211,18 @@
211 211  Below are the requirement for the End Device to receive the packets.
212 212  
213 213  * The End Device must open the receive windows: RX1 or RX2
405 +
214 214  * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node.
407 +
215 215  * This downstream packet must arrive to the end node while RX1 or RX2 is open.
409 +
216 216  * This packet must match the frequency of the RX1 or RX2 window.
411 +
217 217  * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
218 218  
414 +== 6.2 See Debug Info ==
219 219  
220 220  
221 -== 5.2 See Debug Info ==
222 -
223 -
224 224  (((
225 225  (% style="color:blue" %)**For LoRaWAN Server**
226 226  )))
... ... @@ -230,24 +230,27 @@
230 230  )))
231 231  
232 232  (((
233 -Configure a downstream to the end device
426 +Configure a downlink to the end device
427 +
428 +[[image:image-20240129152412-8.png||height="486" width="1206"]]
234 234  )))
235 235  
236 -[[image:image-20220526164623-12.png]]
237 237  
238 238  (((
239 239  Set a downstream in TTN and see it is sent
240 240  )))
241 241  
436 +(% style="color:red" %)**Note: After the downlink command is successfully sent from the platform to the node, the downlink command is executed only after the platform receives the next uplink package from the node.**
242 242  
438 +
243 243  (((
244 -This downstream info will then pass to the gateway downstream list. and include the DR which is used (SF9BW125) in EU868 is DR3
440 +This downlink info will then pass to the gateway downlink list. and the DR which is used (SF7BW500) in US915 is DR5.
245 245  )))
246 246  
247 -[[image:image-20220526164650-13.png]]
443 +[[image:image-20240129152049-7.png||height="463" width="1166"]]
248 248  
249 249  (((
250 -Gateway Traffic can see this downstream info
446 +Gateway Traffic can see this downlink info
251 251  )))
252 252  
253 253  
... ... @@ -257,10 +257,10 @@
257 257  )))
258 258  
259 259  (((
260 -When the downstream packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragion Gateway, this can be checked by runinng "logread -f" in the SSH console. and see below:
456 +When the downlink packet appear on the traffic of Gateway page. The LoRaWAN gateway can get it from LoRaWAN server and transmit it. In Dragino Gateway, this can be checked by running "logread -f" in the SSH console. and see below:
261 261  )))
262 262  
263 -[[image:image-20220526164734-14.png]]
459 +[[image:image-20240129154321-9.png]]
264 264  
265 265  (((
266 266  Gateway Sent out this packet
... ... @@ -277,13 +277,13 @@
277 277  )))
278 278  
279 279  (((
280 -(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
281 -(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
282 -(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
283 -(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
476 +* (% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
284 284  
478 +* (% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
285 285  
286 -
480 +* (% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
481 +
482 +* (% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
287 287  )))
288 288  
289 289  (((
... ... @@ -320,24 +320,24 @@
320 320   1:0012345678}}}
321 321  
322 322  
519 +== 6.3 If problem doesn't solve ==
323 323  
324 -== 5.3 If problem doesn't solve ==
325 325  
326 -
327 327  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
328 328  
329 329  * End node console to show the transmit freuqency and DR.
525 +
330 330  * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server.
527 +
331 331  * Gateway traffic (from server UI) to shows the data exchange between gateway and server.
529 +
332 332  * End Node traffic (from server UI) to shows end node activity in server.
333 333  
532 += 7. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
334 334  
335 335  
336 -= 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
337 -
338 -
339 339  (((
340 -In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
536 +In LoRaWAN, the gateway will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
341 341  )))
342 342  
343 343  (((
... ... @@ -359,65 +359,85 @@
359 359  )))
360 360  
361 361  
558 += 8. Decrypt a LoRaWAN Packet =
362 362  
363 -= 7. Decrypt a LoRaWAN Packet =
364 364  
561 +(% style="color:blue" %)**1. LHT65N End device configure:**
365 365  
366 -(% style="color:blue" %)**1. LHT65 End device configure:**
367 -
368 368  **Change to ABP Mode:  AT+NJM=0**
369 -**Change to fix frequency:  AT+CHS=904900000**
370 -**Change to fix DR:  AT+DR=0**
371 371  
565 +**Change to fix frequency:  ​​​​AT+CHE=1**
372 372  
373 -[[image:image-20220526165525-16.png]]
374 374  
568 +**AT+CFG(Print configuration):**
375 375  
570 +[[image:image-20240129170603-7.png||height="697" width="545"]][[image:image-20240129163741-3.png||height="694" width="565"]]
376 376  
377 -(% style="color:blue" %)**2. In LG02 , configure to receive above message**
378 378  
379 -[[image:image-20220526165612-17.png]]
380 380  
574 +**Configuration: **
381 381  
382 -In LG02 console, we can see the hex receive are:
576 +[[image:image-20240129164219-4.png||height="612" width="440"]]
383 383  
384 -[[image:image-20220526171112-21.png]]
385 385  
386 386  
580 +(% style="color:blue" %)**2. In LPS8-v2, configure to receive above message**
387 387  
388 -(% style="color:blue" %)**3. Decode the info in web**
582 +[[image:image-20240129164326-5.png||height="506" width="1114"]]
389 389  
390 -[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/]]
391 391  
392 -Need these three fields:
585 +In LPS8-v2 console, we can see the Base64 receive are:
393 393  
394 -LoRa packet hex format: 40c1190126800100024926272bf18bbb6341584e27e23245 (from LG02)
587 +[[image:image-20240129170137-6.png||height="459" width="1116"]]
395 395  
396 -AT+NWKSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End node Network Session Key)
397 397  
398 -AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
399 399  
591 +(% style="color:blue" %)**3. Decode the info in CMD(Command prompt window)**
400 400  
401 -[[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
593 +LoRa packet Base64 format:  QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75 **(from LPS8-v2)**
402 402  
403 -[[image:image-20220526171029-20.png]]
595 +Then the instructions and format parsed in SecureCRT are:  ./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75
404 404  
405 -(((
406 - The FRMPayload is the device payload.
407 -)))
408 408  
598 +**Step1: Open CMD, Enter the gateway IP and port.(ssh root@gateway IP -p 22)**
409 409  
600 +[[image:image-20240129190752-17.png||height="338" width="901"]]
410 410  
411 -= 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
602 +[[image:image-20240129191937-21.png||height="450" width="901"]]
412 412  
413 413  
414 -Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
605 +**Step2: Enter the command to download the LoRa parsing package.(npm install lora-packet)**
415 415  
607 +[[image:image-20240129192239-22.png||height="416" width="902"]]
416 416  
609 +[[image:image-20240129192549-23.png||height="459" width="898"]]
417 417  
418 -= 9. Why do I see a "MIC Mismatch" error message from the server? =
419 419  
612 +**Step3: Parse the gateway raw payload.(./node_modules/.bin/lora-packet-decode ~-~-base64 QP~/~/~/~/+AFQACZv8Hjmc8gFTAkhMzU+75)**
420 420  
614 +
615 +
616 +
617 +[[image:image-20240129192908-24.png||height="477" width="907"]]
618 +
619 +
620 +[[image:image-20240129192954-25.png||height="485" width="916"]]
621 +
622 +
623 +
624 +
625 +
626 +
627 +
628 += 9. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware =
629 +
630 +
631 +Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
632 +
633 +
634 += 10. Why do I see a "MIC Mismatch" error message from the server? =
635 +
636 +
421 421  (((
422 422  1)  If the user receives a "MIC Mismatch" message after registering the node on the server.
423 423  )))
... ... @@ -440,35 +440,56 @@
440 440  
441 441  * (((
442 442  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
659 +)))
443 443  
661 +(% class="wikigeneratedid" %)
662 +3)Wrong Regional Parameters version selected
663 + We generally use versions above 1.0.2
444 444  
665 +(% class="wikigeneratedid" %)
666 +[[image:image-20230322163227-1.png]]
445 445  
446 -
447 -)))
668 +(% class="wikigeneratedid" %)
669 +4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue
448 448  
449 -= 10. Why i got the payload only with "0x00" or "AA~=~="? =
450 450  
672 += 11. Why I got the payload only with "0x00" or "AA~=~="? =
451 451  
452 -**Why this happen:**
453 453  
454 -For US915, AU915 or AS923 frequencies.It is possible because: .
675 +(% style="color:blue" %)**Why sensor sends 0x00?**
455 455  
456 -When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
677 +For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.**  For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen.
457 457  
458 -When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
679 +**Possible Case 1**:
459 459  
681 +Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0.
460 460  
461 -**How to solve:**
462 462  
463 -Solution: Use the decoder to filter out this 0x00 packet.
684 +**Possible Case 2:**
464 464  
465 -Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
686 +For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload.
466 466  
467 467  
689 +(% style="color:blue" %)**How to solve:**
468 468  
469 -= 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
691 +Solution:
470 470  
693 +~1. Use the decoder to filter out this 0x00 packet. (**Recommand**)
471 471  
695 +2. Data rate changed from DR3 to DR5, increasing upload byte length
696 +AT+ADR=0
697 +AT+DR=3
698 +
699 +Downlink:
700 +
701 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
702 +
703 +Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
704 +
705 +
706 += 12. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
707 +
708 +
472 472  (((
473 473  It is possible the keys is erased during upgrading of firmware. and the console output shows below after AT+CFG
474 474  )))
... ... @@ -527,8 +527,7 @@
527 527  (Any combination of 16 bit codes can be used)
528 528  
529 529  
530 -
531 -= 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? =
767 += 13. I set my device is LoRaWAN Class C mode, why I still see Class A after boot? =
532 532  )))
533 533  
534 534  
... ... @@ -535,6 +535,27 @@
535 535  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
536 536  
537 537  
774 += 14. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
538 538  
539 -(% class="wikigeneratedid" %)
540 -
776 +
777 +In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server.
778 +
779 +
780 +In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
781 +
782 +We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
783 +
784 +* (((
785 +Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band.
786 +)))
787 +* (((
788 +Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include).
789 +)))
790 +
791 +This change will make the activation time a little longer but make sure the device can be used in any sub-band.
792 +
793 +
794 +Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses.
795 +
796 +
797 +[[image:image-20221215223215-1.png||height="584" width="1280"]]
image-20221215223215-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +183.6 KB
Content
image-20230322163227-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +43.1 KB
Content
image-20240123150720-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +119.9 KB
Content
image-20240123150943-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +161.5 KB
Content
image-20240123151225-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +136.1 KB
Content
image-20240123161737-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +83.0 KB
Content
image-20240123161806-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20240123161853-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +60.6 KB
Content
image-20240123163307-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +123.3 KB
Content
image-20240123182345-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +108.0 KB
Content
image-20240129142110-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +126.9 KB
Content
image-20240129142147-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +116.1 KB
Content
image-20240129142557-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +125.7 KB
Content
image-20240129142631-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +189.0 KB
Content
image-20240129150821-5.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +129.2 KB
Content
image-20240129151608-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +318.1 KB
Content
image-20240129152049-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +148.3 KB
Content
image-20240129152412-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +133.6 KB
Content
image-20240129154321-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +99.5 KB
Content
image-20240129163533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +23.0 KB
Content
image-20240129163714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.2 KB
Content
image-20240129163741-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +36.5 KB
Content
image-20240129164219-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +30.3 KB
Content
image-20240129164326-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +80.8 KB
Content
image-20240129170137-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +115.2 KB
Content
image-20240129170603-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.2 KB
Content
image-20240129172956-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +54.2 KB
Content
image-20240129173810-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
image-20240129173932-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +73.6 KB
Content
image-20240129174125-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +77.0 KB
Content
image-20240129174549-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.6 KB
Content
image-20240129174717-13.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.6 KB
Content
image-20240129174948-14.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.1 KB
Content
image-20240129175037-15.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
image-20240129190344-16.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +17.2 KB
Content
image-20240129190752-17.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.9 KB
Content
image-20240129190840-18.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +17.2 KB
Content
image-20240129191130-19.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +81.7 KB
Content
image-20240129191315-20.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +50.0 KB
Content
image-20240129191937-21.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +71.8 KB
Content
image-20240129192239-22.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +77.5 KB
Content
image-20240129192549-23.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +59.5 KB
Content
image-20240129192908-24.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +101.7 KB
Content
image-20240129192954-25.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.4 KB
Content
image-20250429114526-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +3.2 MB
Content
image-20250429115124-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +193.2 KB
Content
image-20250429115159-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1014.1 KB
Content
image-20250429115942-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +435.8 KB
Content
image-20250429115951-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content
image-20250429120030-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content
image-20250429133640-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 MB
Content