Changes for page LoRaWAN Communication Debug
Last modified by Edwin Chen on 2025/01/29 20:30
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.ting - Content
-
... ... @@ -4,33 +4,38 @@ 4 4 5 5 6 6 7 -= 1. OTAAJoinProcessDebug =7 += 1.Join process page check = 8 8 9 - 10 10 These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process. 11 11 \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:** 12 12 13 13 * End node console to show the Join freuqency and DR. (If possible) 13 + 14 14 * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. (If possible) 15 + 15 15 * Gateway traffic (from server UI) to shows the data exchange between gateway and server. (Normaly possible) 17 + 16 16 * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible) 19 + 17 17 * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI) 18 18 19 - 20 20 (% style="color:blue" %)**1. End Device Join Screen shot, we can check:** 21 21 22 22 * If the device is sending join request to server? 25 + 23 23 * What frequency the device is sending? 24 24 25 -[[image:image-202 20526164956-15.png]]28 +[[image:image-20240123182345-1.png||height="605" width="946"]] 26 26 27 -Console Output from End device to see the transmit frequency 28 28 31 +Console Output from End device to see the transmit frequency. 29 29 30 30 34 + 31 31 (% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:** 32 32 33 33 * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency) 38 + 34 34 * If the gateway gets the Join Accept message from server and transmit it via LoRa? 35 35 36 36 [[image:image-20220526163608-2.png]] ... ... @@ -38,29 +38,33 @@ 38 38 Console Output from Gateway to see packets between end node and server. 39 39 40 40 41 -(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server** 42 42 43 -* If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings. 44 -* If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device. 47 +(% style="color:blue" %)**3. Gateway Live data in LoRaWAN Server** 48 + 49 +* Does the gateway real-time data contain information about Join Request? If not, check the internet connection and gateway LoRaWAN server Settings. 50 + 51 +* Does the server send back a Join Accept for the Join Request? If not, check that the key from the device matches the key you put into the server, or try to choose a different server route for that end device. 52 + 45 45 * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success. 46 46 47 47 [[image:image-20220526163633-3.png]] 48 48 49 -The Traffic for the End node in the server, use TTN as example 57 +The Traffic for the End node in the server, use TTN as example. 50 50 51 51 60 + 52 52 (% style="color:blue" %)**4. Data Page in LoRaWAN server** 53 53 54 54 * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node. 55 55 56 -[[image:image-202 20526163704-4.png]]65 +[[image:image-20240123150720-1.png||height="459" width="1182"]] 57 57 58 58 The data for the end device set in server 59 59 60 -[[image:image-20220526163732-5.png]] 61 61 62 - Checkif OTAA Keysmatchthekeysindevice70 +[[image:image-20240123150943-2.png||height="556" width="1179"]] 63 63 72 +Check if OTAA Keys match the keys in device. 64 64 65 65 66 66 = 2. Notice of US915/CN470/AU915 Frequency band = ... ... @@ -67,17 +67,17 @@ 67 67 68 68 69 69 ((( 70 -If user has problem to work with lorawanserver in band US915/AU915/CN470, he can check:79 +If user has problem to work with LoRaWAN server in band US915/AU915/CN470, he can check: 71 71 ))) 72 72 73 73 * ((( 74 -What **sub-band** the server support 83 +What **sub-band** the server support? 75 75 ))) 76 76 * ((( 77 -What is the **sub-band** the gateway support 86 +What is the **sub-band** the gateway support? 78 78 ))) 79 79 * ((( 80 -What is the **sub-band** the end node is using 89 +What is the **sub-band** the end node is using? 81 81 ))) 82 82 83 83 ((( ... ... @@ -89,7 +89,7 @@ 89 89 ))) 90 90 91 91 ((( 92 -In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn ,t support.101 +In LoRaWAN protocol, the frequency bands US915, AU915, CN470 each includes at least 72 frequencies. Many gateways support only 8 or 16 frequencies, and server might support 8 frequency only. In this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies, because the end node will send data in many frequency that the gateway or server doesn't support. 93 93 ))) 94 94 95 95 ((( ... ... @@ -97,7 +97,7 @@ 97 97 ))) 98 98 99 99 ((( 100 -Here are the fre uqency tables for these bands as reference:109 +Here are the frequency tables for these bands as reference: 101 101 ))) 102 102 103 103 [[image:image-20220526163801-6.png]] ... ... @@ -104,6 +104,7 @@ 104 104 105 105 US915 Channels 106 106 116 + 107 107 [[image:image-20220526163926-7.png]] 108 108 109 109 AU915 Channels ... ... @@ -121,12 +121,12 @@ 121 121 If we look at the [[TTN network server frequency plan>>url:https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html]], we can see the US915 frequency band use the channel 8~~15.So the End Node must work at the same frequency in US915 8~~15 channels for TTN server. 122 122 ))) 123 123 124 -[[image:image-202 20526164052-9.png]]134 +[[image:image-20240123151225-3.png||height="434" width="902"]] 125 125 126 126 ((( 127 127 TTN FREQUENCY PLAN 128 128 129 - 139 +(% style="display:none" %) (%%) 130 130 ))) 131 131 132 132 ((( ... ... @@ -133,24 +133,23 @@ 133 133 In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. ) 134 134 ))) 135 135 146 +(% style="display:none" %) (%%) 136 136 148 += 3. Why I see data lost/ is not periodically uplink? Even the signal strength is good = 137 137 138 -= 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good = 139 139 140 - 141 141 In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below: 142 142 143 -* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors. 144 -* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors. 145 -* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml. 153 +* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors. 146 146 155 +* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors. 156 + 157 +* (% style="color:blue" %)**LoRaWAN server** (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml. 158 + 147 147 ((( 148 148 When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data. 149 149 ))) 150 150 151 -((( 152 - 153 -))) 154 154 155 155 ((( 156 156 Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success. ... ... @@ -157,7 +157,6 @@ 157 157 ))) 158 158 159 159 160 - 161 161 = 4. Transmision on ABP Mode = 162 162 163 163 ... ... @@ -166,27 +166,20 @@ 166 166 ))) 167 167 168 168 ((( 169 - 170 -))) 171 - 172 -((( 173 173 So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue. 174 174 ))) 175 175 176 176 ((( 177 - 178 -))) 179 - 180 -((( 181 181 To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page. 182 + 183 +[[image:image-20240123161737-4.png||height="395" width="763"]] 182 182 ))) 183 183 184 -[[image:image-202 20526164508-10.png]]186 +[[image:image-20240123161853-6.png||height="599" width="771"]] 185 185 186 186 Disable Frame Counter Check in ABP Mode 187 187 188 188 189 - 190 190 = 5. Downstream Debug = 191 191 192 192 == 5.1 How it work == ... ... @@ -195,7 +195,7 @@ 195 195 LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it. 196 196 197 197 ((( 198 -Depends on Class A or Class C, the receive windows will be a little difference ,199 +Depends on Class A or Class C, the receive windows will be a little difference. 199 199 ))) 200 200 201 201 [[image:image-20220531161828-1.png]] ... ... @@ -206,13 +206,17 @@ 206 206 Below are the requirement for the End Device to receive the packets. 207 207 208 208 * The End Device must open the receive windows: RX1 or RX2 210 + 209 209 * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node. 212 + 210 210 * This downstream packet must arrive to the end node while RX1 or RX2 is open. 214 + 211 211 * This packet must match the frequency of the RX1 or RX2 window. 216 + 212 212 * This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.** 213 213 219 +== == 214 214 215 - 216 216 == 5.2 See Debug Info == 217 217 218 218 ... ... @@ -225,10 +225,10 @@ 225 225 ))) 226 226 227 227 ((( 228 -Configure a down streamto the end device233 +Configure a downlink to the end device 229 229 ))) 230 230 231 -[[image:image-202 20526164623-12.png]]236 +[[image:image-20240123163307-7.png||height="330" width="1125"]] 232 232 233 233 ((( 234 234 Set a downstream in TTN and see it is sent ... ... @@ -272,13 +272,13 @@ 272 272 ))) 273 273 274 274 ((( 275 -(% style="color:#037691" %)**AT+RX2FQ=869525000** (%%) **~-~-->** The RX2 Window frequency 276 -(% style="color:#037691" %)**AT+RX2DR=3** (%%) **~-~-->** The RX2 DataRate 277 -(% style="color:#037691" %)**AT+RX1DL=1000** (%%) ** ~-~-->** Receive Delay 1 278 -(% style="color:#037691" %)**AT+RX2DL=2000** (%%) **~-~--> ** Receive Delay 2 280 +* (% style="color:#037691" %)**AT+RX2FQ=869525000** (%%) **~-~-->** The RX2 Window frequency 279 279 282 +* (% style="color:#037691" %)**AT+RX2DR=3** (%%) **~-~-->** The RX2 DataRate 280 280 281 - 284 +* (% style="color:#037691" %)**AT+RX1DL=1000** (%%) ** ~-~-->** Receive Delay 1 285 + 286 +* (% style="color:#037691" %)**AT+RX2DL=2000** (%%) **~-~--> ** Receive Delay 2 282 282 ))) 283 283 284 284 ((( ... ... @@ -315,7 +315,6 @@ 315 315 1:0012345678}}} 316 316 317 317 318 - 319 319 == 5.3 If problem doesn't solve == 320 320 321 321 ... ... @@ -322,12 +322,13 @@ 322 322 (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:** 323 323 324 324 * End node console to show the transmit freuqency and DR. 329 + 325 325 * Gateway (from gateway UI) traffic to show the packet got from end node and receive from Server. 331 + 326 326 * Gateway traffic (from server UI) to shows the data exchange between gateway and server. 333 + 327 327 * End Node traffic (from server UI) to shows end node activity in server. 328 328 329 - 330 - 331 331 = 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency = 332 332 333 333 ... ... @@ -354,7 +354,6 @@ 354 354 ))) 355 355 356 356 357 - 358 358 = 7. Decrypt a LoRaWAN Packet = 359 359 360 360 ... ... @@ -361,7 +361,9 @@ 361 361 (% style="color:blue" %)**1. LHT65 End device configure:** 362 362 363 363 **Change to ABP Mode: AT+NJM=0** 368 + 364 364 **Change to fix frequency: AT+CHS=904900000** 370 + 365 365 **Change to fix DR: AT+DR=0** 366 366 367 367 ... ... @@ -402,14 +402,12 @@ 402 402 ))) 403 403 404 404 411 += 8. Why I see uplink 0x00 periodically on the LHT65 v1.8 firmware = 405 405 406 -= 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware = 407 407 408 - 409 409 Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00. 410 410 411 411 412 - 413 413 = 9. Why do I see a "MIC Mismatch" error message from the server? = 414 414 415 415 ... ... @@ -435,27 +435,53 @@ 435 435 436 436 * ((( 437 437 If a node is registered with multiple servers, it may also cause the "mic mismatch" error. 442 +))) 438 438 444 +(% class="wikigeneratedid" %) 445 +3)Wrong Regional Parameters version selected 446 + We generally use versions above 1.0.2 439 439 448 +(% class="wikigeneratedid" %) 449 +[[image:image-20230322163227-1.png]] 440 440 441 - 442 - )))451 +(% class="wikigeneratedid" %) 452 +4)We have had cases where it was automatically fixed the next day despite no manual changes, probably a server side issue 443 443 454 + 444 444 = 10. Why i got the payload only with "0x00" or "AA~=~="? = 445 445 446 446 447 - *Ifyou areusing US915, AU915orAS923 frequencies.Itis possible because: .458 +(% style="color:blue" %)**Why sensor sends 0x00?** 448 448 449 - Whenusingthefrequencymentionedabove,theserver sometimesadjuststheData Rate(DR)ofthe node,becausethe end node hasAdaptiveDataRate(ADR)Enabled.460 +For US915, AU915 or AS923 frequencies, the max payload lenght is 11 bytes for DR0. Some times sensor needs to send MAC command to server, because the payload is 11 bytes, The MAC command + Payload will exceed 11 bytes and LoRaWAN server will ignore the uplink. In this case, Sensor will send two uplinks together: one uplink is the payload without MAC command, another uplink is **0x00 payload + MAC Command.** For the second uplink, in the server side, it will shows the payload is 0x00. Normally, there are several case this will happen. 450 450 451 - When the server adjusts your node rate to 0, the maximum payload length is11 bytes. The server sometimes sends an ADR packet to the node,and the node will replyto the serverafter receiving the ADR packet, but the number of payload bytesxceedsthelimit,so it will send a normal uplink packet, and an additional 00 data packet.462 +**Possible Case 1**: 452 452 453 -S olution: Usethe decoder tofilter outthis00 packet.464 +Sensor has ADR=1 enable and sensor need to reply server MAC command (ADR request) while sensor has DR=0. 454 454 455 -Some node decoders may not have filtering function, or you need decoders of other servers and formats. Please send an email to [[david.huang@dragino.cc>>mailto:david.huang@dragino.cc]] 456 456 467 +**Possible Case 2:** 457 457 469 +For the sensor which has Datalog Feature enable, the sensor will send TimeRequest MAC Command to sync the time. This Time Request will be sent once Sensor Join Network and Every 10 days. While they send such command with DR=0, sensor will send this command with 0x00 payload. 458 458 471 + 472 +(% style="color:blue" %)**How to solve:** 473 + 474 +Solution: 475 + 476 +~1. Use the decoder to filter out this 0x00 packet. (**Recommand**) 477 + 478 +2. Data rate changed from DR3 to DR5, increasing upload byte length 479 +AT+ADR=0 480 +AT+DR=3 481 + 482 +Downlink: 483 + 484 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]] 485 + 486 +Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]] 487 + 488 + 459 459 = 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? = 460 460 461 461 ... ... @@ -517,7 +517,6 @@ 517 517 (Any combination of 16 bit codes can be used) 518 518 519 519 520 - 521 521 = 12. I set my device is LoRaWAN Class C mode, why i still see Class A after boot? = 522 522 ))) 523 523 ... ... @@ -525,6 +525,30 @@ 525 525 Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode. 526 526 527 527 557 += 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? = 528 528 559 + 560 +In US915, AU915 or CN470 frequency band, there are 8 sub-bands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Sub-band 2 in TTN. The gateway also configured to Sub-band 2 and cover eight channels in this sub-band. If the end node transfer data in Sub-band 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other sub-bands, for example sub-band 1, the packet won't arrive both gateway or LoRaWAN server. 561 + 562 + 563 +In Dragino Sensors old version firmware (before early 2022), the sub-band is fixed the sub-band to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below: 564 + 565 +We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, in this case, in this case, the end node can support LoRaWAN servers with different sub-bands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will: 566 + 567 +* ((( 568 +Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band. 569 +))) 570 +* ((( 571 +Use the Join successful sub-band if the server doesn't include sub-band info in the OTAA Join Accept message (TTN v2 doesn't include). 572 +))) 573 + 574 +This change will make the activation time a little longer but make sure the device can be used in any sub-band. 575 + 576 + 577 +Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the sub-band he uses. 578 + 579 + 580 +[[image:image-20221215223215-1.png||height="584" width="1280"]] 581 + 529 529 (% class="wikigeneratedid" %) 530 530
- image-20221215223215-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +183.6 KB - Content
- image-20230322163227-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +43.1 KB - Content
- image-20240123150720-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.9 KB - Content
- image-20240123150943-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +161.5 KB - Content
- image-20240123151225-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +136.1 KB - Content
- image-20240123161737-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.0 KB - Content
- image-20240123161806-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20240123161853-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +60.6 KB - Content
- image-20240123163307-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +123.3 KB - Content
- image-20240123182345-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +108.0 KB - Content