<
From version < 32.1 >
edited by Edwin Chen
on 2022/06/10 19:32
To version < 37.2 >
edited by Xiaoling
on 2022/12/16 10:46
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,11 +1,12 @@
1 -**~ Contents:**
1 +**~ Table of Contents:**
2 2  
3 3  {{toc/}}
4 4  
5 5  
6 6  
7 -= 1. OTAA Join Process Debug =
7 += 1.(% style="display:none" %) (%%) OTAA Join Process Debug =
8 8  
9 +
9 9  These pages are useful to check what is wrong on the Join process. Below shows the four steps that we can check the Join Process.
10 10  \\**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
11 11  
... ... @@ -15,18 +15,19 @@
15 15  * End Node traffic (from server UI) to shows end node activity in server. (Normaly possible)
16 16  * End Node Keys screen shot shows in end node and server. so we can check if the keys are correct. (In most case, we found keys doesn't match, especially APP EUI)
17 17  
18 -**~1. End Device Join Screen shot, we can check:**
19 +(% style="color:blue" %)**1. End Device Join Screen shot, we can check:**
19 19  
20 20  * If the device is sending join request to server?
21 21  * What frequency the device is sending?
22 22  
23 -[[image:image-20220526164956-15.png]]
24 +[[image:image-20220526164956-15.png||height="591" width="1153"]]
24 24  
25 25  Console Output from End device to see the transmit frequency
26 26  
27 27  
28 -**2. Gateway packet traffic in gateway web or ssh. we can check:**
29 29  
30 +(% style="color:blue" %)**2. Gateway packet traffic in gateway web or ssh. we can check:**
31 +
30 30  * If the gateway receive the Join request packet from sensor? (If this fail, check if the gateway and sensor works on the match frequency)
31 31  * If the gateway gets the Join Accept message from server and transmit it via LoRa?
32 32  
... ... @@ -35,8 +35,9 @@
35 35  Console Output from Gateway to see packets between end node and server.
36 36  
37 37  
38 -**3. Gateway Traffic Page in LoRaWAN Server**
39 39  
41 +(% style="color:blue" %)**3. Gateway Traffic Page in LoRaWAN Server**
42 +
40 40  * If the Join Request packet arrive the gateway traffic in server? If not, check the internet connection and gateway LoRaWAN server settings.
41 41  * If the server send back a Join Accept for the Join Request? if not, check if the keys from the device match the keys you put in the server, or try to choose a different server route for this end device.
42 42  * If the Join Accept message are in correct frequency? If you set the server to use US915 band, and your end node and gateway is EU868, you will see the Join Accept message are in US915 band so no possible to Join success.
... ... @@ -46,8 +46,9 @@
46 46  The Traffic for the End node in the server, use TTN as example
47 47  
48 48  
49 -**4. Data Page in LoRaWAN server**
50 50  
53 +(% style="color:blue" %)**4. Data Page in LoRaWAN server**
54 +
51 51  * If this data page shows the Join Request message from the end node? If not, most properly you have wrong settings in the keys. Keys in the server doesn't match the keys in End Node.
52 52  
53 53  [[image:image-20220526163704-4.png]]
... ... @@ -54,6 +54,7 @@
54 54  
55 55  The data for the end device set in server
56 56  
61 +
57 57  [[image:image-20220526163732-5.png]]
58 58  
59 59  Check if OTAA Keys match the keys in device
... ... @@ -61,6 +61,7 @@
61 61  
62 62  = 2. Notice of US915/CN470/AU915 Frequency band =
63 63  
69 +
64 64  (((
65 65  If user has problem to work with lorawan server in band US915/AU915/CN470, he can check:
66 66  )))
... ... @@ -99,14 +99,18 @@
99 99  
100 100  US915 Channels
101 101  
108 +
102 102  [[image:image-20220526163926-7.png]]
103 103  
104 104  AU915 Channels
105 105  
113 +
106 106  [[image:image-20220526163941-8.png]]
107 107  
108 108  (((
109 109  CN470 Channels
118 +
119 +
110 110  )))
111 111  
112 112  (((
... ... @@ -117,6 +117,8 @@
117 117  
118 118  (((
119 119  TTN FREQUENCY PLAN
130 +
131 +(% style="display:none" %) (%%)
120 120  )))
121 121  
122 122  (((
... ... @@ -123,22 +123,23 @@
123 123  In dragino end node, user can use AT+CHE command to set what frequencies set the end node will use. The default settings for Dragino end node are preconfigure for TTN server, so use 8~~15 channels, which is **AT+CHE=2**. (AT+CHE=1 for first 8 channels, AT+CHE=2 for second 8 channels.. etc, and AT+CHE=0 for all 72 channels. )
124 124  )))
125 125  
138 +(% style="display:none" %) (%%)
126 126  
127 127  = 3. Why i see data lost/unperiocially uplink data? Even the signal strength is good =
128 128  
142 +
129 129  In this case, we can check if the frequency band matches in End Node, Gateway and LoRaWAN server. A typical case is using US915 in ChirpStack server as below:
130 130  
131 -* **End node** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
132 -* **Gateway** ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
133 -* **LoRaWAN server** ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
145 +* (% style="color:blue" %)**End node** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Sensor. ADR is also enable, this is the default settings for dragino sensors.
134 134  
147 +* (% style="color:blue" %)**Gateway** (%%) ~-~-> Use Sub-band2 (Channel 8,9,10,11,12,13,14,15) for Dragino Gateway. this is the default settings for dragino sensors.
148 +
149 +* (% style="color:blue" %)**LoRaWAN server**  (%%) ~-~-> ChirpStack default installation and use Sub-band1, **enabled_uplink_channels=[0, 1, 2, 3, 4, 5, 6, 7]** in the file chirpstack-network-server.toml.
150 +
135 135  (((
136 136  When Sensor power on, it will use sub-band2 to join the network, the frequency matches the settings in gateway so all Join Request will be passed to the server for Join. Server will ask the sensor to change to Sub-band1 in the Join Accept downlink message. Sensor will change to sub-band1 for data upload. This cause the sensor and gateway have different frequencies so user see lost of most data or even no data.
137 137  )))
138 138  
139 -(((
140 -
141 -)))
142 142  
143 143  (((
144 144  Use Subband2 as a default subband cause the sensor to have problem to work with the LoRaWAN server which use other subband, and use need to access to the end node to change the subband by console. that is not user frendily,. So since Dragino LoRaWAN Stack version DLS-005(release on end of 2020), we have changed the device to use All Subbands for OTAA join, for example, device will use the first frequency in Sub-Band1 as firt OTAA join packet, then use the first frequency in Sub-Band 2 , then first frequency in sub-band 3, and so on. LoRaWAN server will normally provide the required subband in the OTAA accept process, so end node will know what subband it use after join. If LoRaWAN server doesn't provide subband info in OTAA join, end node will use the subband which join success as the working subband. So the new method cause a longer OTAA Join time but will be compatible with all LoRaWAN server. And new method won't affect the normal uplink after Join Success.
... ... @@ -147,23 +147,16 @@
147 147  
148 148  = 4. Transmision on ABP Mode =
149 149  
163 +
150 150  (((
151 151  In ABP mode, there is a Frame Counter Checks. With this check enabled, the server will only accept the frame with a higher counter. If you reboot the device in ABP mode, the device will start from count 0, so you won't be able to see the frame update in server.
152 152  )))
153 153  
154 154  (((
155 -
156 -)))
157 -
158 -(((
159 159  So in ABP mode, first check if the packet already arrive your gateway, if the packet arrive gatewat but didn't arrive server. Please check if this is the issue.
160 160  )))
161 161  
162 162  (((
163 -
164 -)))
165 -
166 -(((
167 167  To solve this, disable the Frame Counter Check will solve this issue , or reset the frame counter in the device page.
168 168  )))
169 169  
... ... @@ -176,6 +176,7 @@
176 176  
177 177  == 5.1 How it work ==
178 178  
185 +
179 179  LoRaWAN End node will open two receive windows to receive the downstream data. If the downstream packets arrive the end node at these receive windows, the end node will be able to get this packet and process it.
180 180  
181 181  (((
... ... @@ -186,19 +186,26 @@
186 186  
187 187  receive windows for Class A and Class C
188 188  
196 +
189 189  Below are the requirement for the End Device to receive the packets.
190 190  
191 191  * The End Device must open the receive windows: RX1 or RX2
200 +
192 192  * The LoRaWAN server must send a downstream packet, and the gateway forward this downstream packet for this end node.
202 +
193 193  * This downstream packet must arrive to the end node while RX1 or RX2 is open.
204 +
194 194  * This packet must match the frequency of the RX1 or RX2 window.
195 -* This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). **This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
196 196  
207 +* This packet must match the DataRate of RX1(RX1DR) or RX2 (RX2DR). (% style="color:red" %)**This is the common fail point, because different lorawan server might use different RX2DR and they don't info End Node via ADR message so cause the mismatch. If this happen, user need to change the RX2DR to the right value in end node. In OTAA, LoRaWAN Server will send the RX2DR setting in Join Accept message so the end node will auto adjust. but ABP uplink doesn't support this auto change.**
197 197  
209 +
210 +
198 198  == 5.2 See Debug Info ==
199 199  
213 +
200 200  (((
201 -**For LoRaWAN Server**
215 +(% style="color:blue" %)**For LoRaWAN Server**
202 202  )))
203 203  
204 204  (((
... ... @@ -227,8 +227,9 @@
227 227  )))
228 228  
229 229  
244 +
230 230  (((
231 -**For LoRaWAN Gateway**
246 +(% style="color:blue" %)**For LoRaWAN Gateway**
232 232  )))
233 233  
234 234  (((
... ... @@ -242,8 +242,9 @@
242 242  )))
243 243  
244 244  
260 +
245 245  (((
246 -**For End Node**
262 +(% style="color:blue" %)**For End Node**
247 247  )))
248 248  
249 249  (((
... ... @@ -251,23 +251,19 @@
251 251  )))
252 252  
253 253  (((
270 +(% style="color:#037691" %)**AT+RX2FQ=869525000**  (%%) **~-~-->**  The RX2 Window frequency
271 +(% style="color:#037691" %)**AT+RX2DR=3**          (%%) **~-~-->**  The RX2 DataRate
272 +(% style="color:#037691" %)**AT+RX1DL=1000**       (%%) ** ~-~-->**  Receive Delay 1
273 +(% style="color:#037691" %)**AT+RX2DL=2000**       (%%) **~-~--> ** Receive Delay 2
274 +
275 +
254 254  
255 255  )))
256 256  
257 257  (((
258 -(% class="box infomessage" %)
259 -(((
260 -AT+RX2FQ=869525000     ~-~--> The RX2 Window frequency
261 -AT+RX2DR=3      ~-~--> The RX2 DataRate
262 -AT+RX1DL=1000   ~-~--> Receive Delay 1
263 -AT+RX2DL=2000   ~-~--> Receive Delay 2
280 +(% style="color:blue" %)**when the device running, we can see below info:**
264 264  )))
265 -)))
266 266  
267 -(((
268 -**when the device running, we can see below info:**
269 -)))
270 -
271 271  {{{ [12502]***** UpLinkCounter= 0 *****
272 272   [12503]TX on freq 868500000 Hz at DR 0
273 273   [13992]txDone
... ... @@ -278,10 +278,12 @@
278 278  
279 279  (((
280 280  
293 +
294 +
281 281  )))
282 282  
283 283  (((
284 -**Another message:**
298 +(% style="color:blue" %)**Another message:**
285 285  )))
286 286  
287 287  {{{ [12502]***** UpLinkCounter= 0 *****
... ... @@ -296,8 +296,9 @@
296 296   1:0012345678}}}
297 297  
298 298  
299 -== 5.3 If problem doesnt solve ==
313 +== 5.3 If problem doesn't solve ==
300 300  
315 +
301 301  (% style="color:red" %)**If user has checked below steps and still can't solve the problem, please send us (support @ dragino.com) the sceenshots for each step to check. They include:**
302 302  
303 303  * End node console to show the transmit freuqency and DR.
... ... @@ -306,8 +306,10 @@
306 306  * End Node traffic (from server UI) to shows end node activity in server.
307 307  
308 308  
324 +
309 309  = 6. Downlink Issue ~-~- Packet REJECTED, unsupported frequency =
310 310  
327 +
311 311  (((
312 312  In LoRaWAN, the gatewat will use the frequency specify by the server to transmit a packet as downlink purpose. Each Frequency band has different downlink frequency. and the gateway has a frequency range limited to transmit downlink.
313 313  )))
... ... @@ -333,20 +333,20 @@
333 333  
334 334  = 7. Decrypt a LoRaWAN Packet =
335 335  
336 -~1. LHT65 End device configure:
337 337  
338 -(% class="box infomessage" %)
339 -(((
340 -**Change to ABP Mode: AT+NJM=0**
341 -**Change to fix frequency: AT+CHS=904900000**
342 -**Change to fix DR: AT+DR=0**
343 -)))
354 +(% style="color:blue" %)**1. LHT65 End device configure:**
344 344  
356 +**Change to ABP Mode:  AT+NJM=0**
357 +**Change to fix frequency:  AT+CHS=904900000**
358 +**Change to fix DR:  AT+DR=0**
359 +
360 +
345 345  [[image:image-20220526165525-16.png]]
346 346  
347 347  
348 -2. In LG02 , configure to receive above message
349 349  
365 +(% style="color:blue" %)**2. In LG02 , configure to receive above message**
366 +
350 350  [[image:image-20220526165612-17.png]]
351 351  
352 352  
... ... @@ -355,8 +355,9 @@
355 355  [[image:image-20220526171112-21.png]]
356 356  
357 357  
358 -3. Decode the info in web
359 359  
376 +(% style="color:blue" %)**3. Decode the info in web**
377 +
360 360  [[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/]]
361 361  
362 362  Need these three fields:
... ... @@ -367,6 +367,7 @@
367 367  
368 368  AT+APPSKEY=00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 11 (End Node App Session Key)
369 369  
388 +
370 370  [[https:~~/~~/lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111>>url:https://lorawan-packet-decoder-0ta6puiniaut.runkit.sh/?data=40c1190126800100024926272bf18bbb6341584e27e23245&nwkskey=00000000000000000000000000000111&appskey=00000000000000000000000000000111]]
371 371  
372 372  [[image:image-20220526171029-20.png]]
... ... @@ -378,13 +378,15 @@
378 378  
379 379  = 8. Why i see uplink 0x00 periodcally on the LHT65 v1.8 firmware =
380 380  
400 +
381 381  Since firmware v1.8, LHT65 will send MAC command to request time, in the case if DR only support max 11 bytes, this MAC command will be bundled to a separate uplink payload with 0x00.
382 382  
383 383  
384 384  = 9. Why do I see a "MIC Mismatch" error message from the server? =
385 385  
406 +
386 386  (((
387 -1)If the user receives a "MIC Mismatch" message after registering the node on the server.
408 +1)  If the user receives a "MIC Mismatch" message after registering the node on the server.
388 388  )))
389 389  
390 390  (((
... ... @@ -406,32 +406,32 @@
406 406  * (((
407 407  If a node is registered with multiple servers, it may also cause the "mic mismatch" error.
408 408  
430 +
409 409  
410 410  )))
411 411  
412 412  = 10. Why i got the payload only with "0x00" or "AA~=~="? =
413 413  
414 -* If you are using US915, AU915 and AS923 frequencies.This is normal phenomenon.
415 415  
416 -(((
417 -When using the frequency mentioned above, the server sometimes adjusts the rate of the node, because the node defaults to the adaptive rate.
418 -)))
437 +**Why this happen:**
419 419  
420 -(((
421 -When the server adjusts your node rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the node,and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit,so it will send a normal uplink packet, and an additional 00 data packet.
422 -)))
439 +For US915, AU915 or AS923 frequencies.It is possible because: .
423 423  
424 -* (((
425 -Solution: Use the decoder to filter out this 00 packet.
426 -)))
427 -* (((
428 -Some node decoders may not have filtering function, or you need decoders of other servers and formats. Please send an email to [[david.huang@dragino.cc>>mailto:david.huang@dragino.cc]]
441 +When using the frequency mentioned above, the server sometimes adjusts the Data Rate (DR) of the node, because the end node has Adaptive Data Rate (ADR) Enabled.
429 429  
430 -
431 -)))
443 +When the server adjusts end node data rate to 0, the maximum payload length is 11 bytes. The server sometimes sends an ADR packet to the end node, and the node will reply to the server after receiving the ADR packet, but the number of payload bytes exceeds the limit, so it will send a normal uplink packet, and following an additional 00 data packet to handle this MAC command response.
432 432  
445 +
446 +**How to solve:**
447 +
448 +Solution: Use the decoder to filter out this 0x00 packet.
449 +
450 +Some node decoders may not have the filter function, or you need decoders of other servers and formats. Please send an email to [[support@dragino.com>>mailto:support@dragino.com]]
451 +
452 +
433 433  = 11. Why my Dev EUI and APP EUI is 0x000000000000, how to solve? =
434 434  
455 +
435 435  (((
436 436  It is possible the keys is erased during upgrading of firmware. and the console output shows below after AT+CFG
437 437  )))
... ... @@ -462,6 +462,8 @@
462 462  
463 463  (((
464 464  You can rewrites the keys by running commands in AT Console
486 +
487 +
465 465  )))
466 466  
467 467  (((
... ... @@ -495,6 +495,30 @@
495 495  Class C only refers to status after OTAA Join successfully. The OTAA Join Process will use Class A mode.
496 496  
497 497  
521 += 13. Why it takes longer time for OTAA joined in US915/CN470/AU915 band? =
498 498  
523 +
524 +In US915, AU915 or CN470 frequency band, there are 8 subbands, totally 72 channels. and LoRaWAN server normally use only one sub-band, for example Subband 2 in TTN. The gateway also configured to Subband 2 and cover eight channels in this subband. If the end node transfer data in Subband 2, it will reach to gateway and to the LoRaWAN server. If the end node transfer packets in other subbands, for example subband 1, the packet won't arrive both gateway or LoRaWAN server.
525 +
526 +
527 +In Dragino Sensors old version firmware (before early 2022), the subband is fixed the subband to 2 , but this cause a problem, the end node is hard to use in other subband and need program. So the new logic is as below:
528 +
529 +We have improved this, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join, In this case, In this case, the end node can support LoRaWAN servers with different subbands. To make sure the end node will only transmit the proper sub-band after OTAA Joined successfully, the end node will:
530 +
531 +* (((
532 +Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that subband
533 +)))
534 +* (((
535 +Use the Join successful sub-band if the server doesn't include subband info in the OTAA Join Accept message ( TTN v2 doesn't include)
536 +)))
537 +
538 +This change will make the activation time a littler longer but make sure the device can be used in any subband.
539 +
540 +
541 +Below is a photo to show why it takes longer time for OTAA Join. We can see in 72 channels mode, why it takes more time to join success. If users want to have faster OTAA Join success, he can change default CHE to the subband he use.
542 +
543 +
544 +[[image:image-20221215223215-1.png||height="584" width="1280"]]
545 +
499 499  (% class="wikigeneratedid" %)
500 500  
image-20221215223215-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +183.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0